Sul problema pluriarmonico in un campo sferico di 𝐂 n per n 3

Maria Adelaide Sneider

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1983)

  • Volume: 74, Issue: 6, page 351-356
  • ISSN: 1120-6330

Abstract

top
Let Σ be the boundary of the unit ball Ω of 𝐂 n . A set of second order linear partial differential operators, tangential to Σ , is explicitly given in such a way that, for n 3 , the corresponding PDE caractherize the trace of the solution of the pluriharmonic problem (either “in the large” or “local”), relative to Ω .

How to cite

top

Sneider, Maria Adelaide. "Sul problema pluriarmonico in un campo sferico di $\mathbf{C}^{n}$ per $n \ge 3$." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 74.6 (1983): 351-356. <http://eudml.org/doc/287184>.

@article{Sneider1983,
author = {Sneider, Maria Adelaide},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {boundary values of pluriharmonic functions},
language = {ita},
month = {6},
number = {6},
pages = {351-356},
publisher = {Accademia Nazionale dei Lincei},
title = {Sul problema pluriarmonico in un campo sferico di $\mathbf\{C\}^\{n\}$ per $n \ge 3$},
url = {http://eudml.org/doc/287184},
volume = {74},
year = {1983},
}

TY - JOUR
AU - Sneider, Maria Adelaide
TI - Sul problema pluriarmonico in un campo sferico di $\mathbf{C}^{n}$ per $n \ge 3$
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1983/6//
PB - Accademia Nazionale dei Lincei
VL - 74
IS - 6
SP - 351
EP - 356
LA - ita
KW - boundary values of pluriharmonic functions
UR - http://eudml.org/doc/287184
ER -

References

top
  1. Audibert, T. (1977) - Caractérisation locale par des opérateurs differentielles des réstriction à la sphere de 𝐂 n des fonctions pluriharmoniques, «C. R. Acad. Sci.», Paris, A, 294, 1029-1031. Zbl0346.31004MR432917
  2. Bedford, E. (1974) - The Dirichlet Problem for Some Overdetermined Systems on the Unit Ball in 𝐂 n , «Pacific Journal of Math.», 51, 19-25. Zbl0289.35064MR346340
  3. Bedford, E. e Federbush, P. (1974) - Pluriharmonic Boundary Values, «Tokio Mathem. Journal», 26, 505-511. Zbl0298.31012MR361160
  4. Fichera, G. (1981) - Boundary values of analytic functions of several variables, in corso di stampa sui «Proceedings of the Inter. Conference on Complex Analysis», Varna, settembre. Zbl0592.32002
  5. Fichera, G. (1981) - Problemi di valori al contorno per le funzioni pluriarmoniche, «Actes du VIe Congrès du Groupement des Mathématiciens d’Expression Latine», Luxembourg, Gauthier-Villards; 139-151. MR664214
  6. Fichera, G. e Sneider, M.A. (1982) - Pluriharmonic functions in the unit ball of 𝐑 2 n , «Rendiconti di Matematica», Roma, 4, 2, VII, 627-641. Zbl0531.31011MR699441
  7. Nacinovich, M. (1982) - Complex Analysis and Complexes of Differential Operators, in «Complex Analysis», Proc. Summer School on Complex Analysis (Trieste, 1980), Lecture Notes in Mathem., 950, Springer-Verlag, Berlin, Heidelberg, New-York; 105-195. MR672785
  8. Rudin, W. (1980) - Function theory in the unit ball of 𝐂 n , Springer Verlag, Berlin, Heidelberg, New York, 398-402. MR601594

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.