Minimal sets of generalized dynamical systems

Basilio Messano; Antonio Zitarosa

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1989)

  • Volume: 83, Issue: 1, page 1-5
  • ISSN: 1120-6330

Abstract

top
We introduce generalized dynamical systems (including both dynamical systems and discrete dynamical systems) and give the notion of minimal set of a generalized dynamical system. Then we prove a generalization of the classical G.D. Birkhoff theorem about minimal sets of a dynamical system and some propositions about generalized discrete dynamical systems.

How to cite

top

Messano, Basilio, and Zitarosa, Antonio. "Minimal sets of generalized dynamical systems." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 83.1 (1989): 1-5. <http://eudml.org/doc/287220>.

@article{Messano1989,
abstract = {We introduce generalized dynamical systems (including both dynamical systems and discrete dynamical systems) and give the notion of minimal set of a generalized dynamical system. Then we prove a generalization of the classical G.D. Birkhoff theorem about minimal sets of a dynamical system and some propositions about generalized discrete dynamical systems.},
author = {Messano, Basilio, Zitarosa, Antonio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Generalized dynamical system; Birkhoff system; Minimal set; generalized dynamical system; minimal set},
language = {eng},
month = {12},
number = {1},
pages = {1-5},
publisher = {Accademia Nazionale dei Lincei},
title = {Minimal sets of generalized dynamical systems},
url = {http://eudml.org/doc/287220},
volume = {83},
year = {1989},
}

TY - JOUR
AU - Messano, Basilio
AU - Zitarosa, Antonio
TI - Minimal sets of generalized dynamical systems
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1989/12//
PB - Accademia Nazionale dei Lincei
VL - 83
IS - 1
SP - 1
EP - 5
AB - We introduce generalized dynamical systems (including both dynamical systems and discrete dynamical systems) and give the notion of minimal set of a generalized dynamical system. Then we prove a generalization of the classical G.D. Birkhoff theorem about minimal sets of a dynamical system and some propositions about generalized discrete dynamical systems.
LA - eng
KW - Generalized dynamical system; Birkhoff system; Minimal set; generalized dynamical system; minimal set
UR - http://eudml.org/doc/287220
ER -

References

top
  1. BHATIA, N.P. and SZEGO, G.P., 1970. Stability Theory of Dynamical Systems. Springer-Verlag, Berlin, Heidelberg, New York. Zbl0155.42201MR289890
  2. BIRKHOFF, G.D., 1927. Dynamical Systems. AMS Colloquium Publications9, New York. Zbl53.0732.01JFM53.0732.01
  3. LA SALLE, J.P., 1976. The Stability of Dynamical Systems. CBMS Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia. Zbl0364.93002MR481301
  4. MESSANO, B. and ZITAROSA, A.. Some characterizations of the compact topological space, preprint. Zbl0743.54008
  5. SIBIRSKI, K.S., 1975. Introduction to topological dynamics. Noordhoff International Publishing, Leyden. Zbl0297.54001MR357987
  6. WALKER, J.A., 1980. Dynamical Systems and Evolution Equations. Plenum Press, New York and London. Zbl0421.34050MR561511

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.