A topological property of the set of fixed points of a multivalued contraction with convex values

Biagio Ricceri

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1987)

  • Volume: 81, Issue: 3, page 283-286
  • ISSN: 1120-6330

Abstract

top
In this Note we first establish a result on the structure of the set of fixed points of a multi-valued contraction with convex values. As a consequence of this result, we then obtain the following theorem: Let ( U , U ) , ( V , V ) be two real Banach spaces and let Φ be a continuous linear operator from U onto V . Put: α = sup { inf { u U : u Φ - 1 ( v ) } : v V , v V 1 } . Then, for every v V and every lipschitzian operator Ψ : U V , with Lipschitz constant L such that α L < 1 , the set { u U : Φ ( u ) + Ψ ( u ) = v } is non-empty and arc wise connected.

How to cite

top

Ricceri, Biagio. "Une propriété topologique de l'ensemble des points fixes d'une contraction multivoque à valeurs convexes." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 81.3 (1987): 283-286. <http://eudml.org/doc/287233>.

@article{Ricceri1987,
author = {Ricceri, Biagio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Multi-valued contraction; Fixed point; Absolute extensor; absolute extensor; structure of the set of fixed points of a multi-valued contraction with convex values; lipschitzian operator; Lipschitz constant},
language = {fre},
month = {9},
number = {3},
pages = {283-286},
publisher = {Accademia Nazionale dei Lincei},
title = {Une propriété topologique de l'ensemble des points fixes d'une contraction multivoque à valeurs convexes},
url = {http://eudml.org/doc/287233},
volume = {81},
year = {1987},
}

TY - JOUR
AU - Ricceri, Biagio
TI - Une propriété topologique de l'ensemble des points fixes d'une contraction multivoque à valeurs convexes
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1987/9//
PB - Accademia Nazionale dei Lincei
VL - 81
IS - 3
SP - 283
EP - 286
LA - fre
KW - Multi-valued contraction; Fixed point; Absolute extensor; absolute extensor; structure of the set of fixed points of a multi-valued contraction with convex values; lipschitzian operator; Lipschitz constant
UR - http://eudml.org/doc/287233
ER -

References

top
  1. MICHAEL, E. (1953) - «Pacific J. Math.», 3, 789-806. Zbl0052.11502MR59541
  2. SMITHSON, R.E. (1972) - «Nieuw Arch. Wisk.», 20, 32-53. Zbl0236.54013MR305338
  3. MICHAEL, E. (1956) - «Ann. of Math.», 63, 361-382. Zbl0071.15902MR77107
  4. AUBIN, J.-P. et CELLINA, A. (1984) - «Differential inclusions», Springer-Verlag. MR755330DOI10.1007/978-3-642-69512-4
  5. COVITZ, H. et NADLER, S.B. (1970) - «Israel J. Math.», 8, 5-11. Zbl0192.59802MR263062
  6. ROBINSON, S.M. (1972) - «Trans. Amer. Math. Soc.», 174, 127-140. Zbl0264.47018MR313769
  7. SAINT RAYMOND, J. (1984) - «C.R. Acad. Sc. Paris», 298, série I, 71-74. Zbl0561.54042MR740940

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.