Uniqueness theorems for steady, compressible, heat-conducting fluids: bounded domains

Maria-Rosaria Padula

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1983)

  • Volume: 74, Issue: 6, page 380-387
  • ISSN: 1120-6330

How to cite

top

Padula, Maria-Rosaria. "Uniqueness theorems for steady, compressible, heat-conducting fluids: bounded domains." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 74.6 (1983): 380-387. <http://eudml.org/doc/287266>.

@article{Padula1983,
author = {Padula, Maria-Rosaria},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {uniqueness theorem; viscous, compressible, ideal and polytropic fluid},
language = {eng},
month = {6},
number = {6},
pages = {380-387},
publisher = {Accademia Nazionale dei Lincei},
title = {Uniqueness theorems for steady, compressible, heat-conducting fluids: bounded domains},
url = {http://eudml.org/doc/287266},
volume = {74},
year = {1983},
}

TY - JOUR
AU - Padula, Maria-Rosaria
TI - Uniqueness theorems for steady, compressible, heat-conducting fluids: bounded domains
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1983/6//
PB - Accademia Nazionale dei Lincei
VL - 74
IS - 6
SP - 380
EP - 387
LA - eng
KW - uniqueness theorem; viscous, compressible, ideal and polytropic fluid
UR - http://eudml.org/doc/287266
ER -

References

top
  1. Graffi, D. (1953) - Il teorema di unicità nella dinamica dei fluidi compressibili, «J. Rational Mech. Anal.», 2, 99-106. Zbl0050.19604MR52270
  2. Serrin, J. (1959) - On the uniqueness of compressible fluid motions, «Arch. Rational Mech. Anal.», 3, 271-288. Zbl0089.19103MR106646
  3. Graffi, D. (1960) — Sul teorema di unicità per le equazioni del moto dei fluidi compressibili in un dominio illimitato, «Atti Acc. delle Sci. Bologna», (11) 7, 1- 8. Zbl0112.18804MR191231
  4. Matsumura, A. and Nishida, T. (1980) - The initial value problem for the equations of motion of viscous and heat-conductive gases, «J. Math. Kyoto Univ.», 21, 67-104. Zbl0429.76040MR564670
  5. Matsumura, A. and Nishida, T. (1981) - Initial boundary value problems for the equations of motion of general fluids, «Proc. Conference at I.N.R.I.A.», december. MR784652
  6. Spiegel, E.A. (1964) - Convective instability in a compressible atmosphere, «Astrophys. J.», 139, 1068-1090. MR187901
  7. Padula, M. (1981) - On the uniqueness of viscous compressible steady flows, «Proc. IVth Symposium on Trends in Application of Pure Mathematics to Mechanics», August, Bratislava. 
  8. Padula, M. (1981) - Existence and continuous dependence for solutions to the equations of a one-dimensional model in gas dynamics, «Meccanica J. of A.I.M.E.T.A.», 17, 128-135. Zbl0483.76087
  9. Teman, R. (1977) - Navier-Stokes equations, «Studies in Math, and its Appl.», North Holland. 
  10. Padula, M. - Existence and uniqueness for viscous steady compressible motions, «Arch. Rational Mech. Anal.», in press. Zbl0644.76086MR860302DOI10.1007/BF00251910
  11. Courant, R. and Friedrichs, K.O. (1948) - Supersonic flow and shock waves, «Intersci. Publ., Inc.», New York. Zbl0041.11302MR29615
  12. Truesdell, C. (1953) - Hydrodynamical theory of ultrasonic waves, «J. Rational Mech. Anal.», 2, 642-659. MR60984
  13. Cattabriga, L. (1961) - Su un problema al contorno relativo al sistema di equazioni di Stokes, «Rend. Sem. Mat. Padova», 1. Zbl0116.18002MR138894
  14. Padula, M. (1981) - A uniqueness theorem for steady viscous ideal flows, (Proc. Symposium on Mathematical Methods in the dynamics of Fluids and Ionized Gases», September, Trieste Italy. 
  15. Serrin, J. (1959) - Mathematical principles of classical fluid mechanics, «Handbuch der Physik», VIII/1, 125-263. MR108116

NotesEmbed ?

top

You must be logged in to post comments.