Periodic solutions to a non-linear differential equation of the order 2 n + 1

Monika Kubicova

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1989)

  • Volume: 83, Issue: 1, page 133-137
  • ISSN: 1120-6330

Abstract

top
A criterion for the existance of periodic solutions of an ordinary differential equation of order k proved by J. Andres and J. Vorâcek for k = 3 is extended to an arbitrary odd k.

How to cite

top

Kubicova, Monika. "Periodic solutions to a non-linear differential equation of the order $2n+1$." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 83.1 (1989): 133-137. <http://eudml.org/doc/287275>.

@article{Kubicova1989,
abstract = {A criterion for the existance of periodic solutions of an ordinary differential equation of order k proved by J. Andres and J. Vorâcek for k = 3 is extended to an arbitrary odd k.},
author = {Kubicova, Monika},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Nonlinear ordinary differential equations; Periodic solutions; Existence; ordinary differential equations of odd order; periodic solution},
language = {eng},
month = {12},
number = {1},
pages = {133-137},
publisher = {Accademia Nazionale dei Lincei},
title = {Periodic solutions to a non-linear differential equation of the order $2n+1$},
url = {http://eudml.org/doc/287275},
volume = {83},
year = {1989},
}

TY - JOUR
AU - Kubicova, Monika
TI - Periodic solutions to a non-linear differential equation of the order $2n+1$
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1989/12//
PB - Accademia Nazionale dei Lincei
VL - 83
IS - 1
SP - 133
EP - 137
AB - A criterion for the existance of periodic solutions of an ordinary differential equation of order k proved by J. Andres and J. Vorâcek for k = 3 is extended to an arbitrary odd k.
LA - eng
KW - Nonlinear ordinary differential equations; Periodic solutions; Existence; ordinary differential equations of odd order; periodic solution
UR - http://eudml.org/doc/287275
ER -

NotesEmbed ?

top

You must be logged in to post comments.