Periodic solutions to a non-linear differential equation of the order 2 n + 1

Monika Kubicova

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1989)

  • Volume: 83, Issue: 1, page 133-137
  • ISSN: 1120-6330

Abstract

top
A criterion for the existance of periodic solutions of an ordinary differential equation of order k proved by J. Andres and J. Vorâcek for k = 3 is extended to an arbitrary odd k.

How to cite

top

Kubicova, Monika. "Periodic solutions to a non-linear differential equation of the order $2n+1$." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 83.1 (1989): 133-137. <http://eudml.org/doc/287275>.

@article{Kubicova1989,
abstract = {A criterion for the existance of periodic solutions of an ordinary differential equation of order k proved by J. Andres and J. Vorâcek for k = 3 is extended to an arbitrary odd k.},
author = {Kubicova, Monika},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Nonlinear ordinary differential equations; Periodic solutions; Existence; ordinary differential equations of odd order; periodic solution},
language = {eng},
month = {12},
number = {1},
pages = {133-137},
publisher = {Accademia Nazionale dei Lincei},
title = {Periodic solutions to a non-linear differential equation of the order $2n+1$},
url = {http://eudml.org/doc/287275},
volume = {83},
year = {1989},
}

TY - JOUR
AU - Kubicova, Monika
TI - Periodic solutions to a non-linear differential equation of the order $2n+1$
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1989/12//
PB - Accademia Nazionale dei Lincei
VL - 83
IS - 1
SP - 133
EP - 137
AB - A criterion for the existance of periodic solutions of an ordinary differential equation of order k proved by J. Andres and J. Vorâcek for k = 3 is extended to an arbitrary odd k.
LA - eng
KW - Nonlinear ordinary differential equations; Periodic solutions; Existence; ordinary differential equations of odd order; periodic solution
UR - http://eudml.org/doc/287275
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.