Motivation, existence and equivariance of D -estimators

Igor Vajda

Kybernetika (1984)

  • Volume: 20, Issue: 3, page 189-208
  • ISSN: 0023-5954

How to cite

top

Vajda, Igor. "Motivation, existence and equivariance of $D$-estimators." Kybernetika 20.3 (1984): 189-208. <http://eudml.org/doc/28738>.

@article{Vajda1984,
author = {Vajda, Igor},
journal = {Kybernetika},
keywords = {maximum likelihood estimators; D-estimators; f-divergence; convex functions; M-estimators; minimum distance estimators; examples; non- asymptotic aspects; existence; measurability; continuity; invariance; equivariance},
language = {eng},
number = {3},
pages = {189-208},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Motivation, existence and equivariance of $D$-estimators},
url = {http://eudml.org/doc/28738},
volume = {20},
year = {1984},
}

TY - JOUR
AU - Vajda, Igor
TI - Motivation, existence and equivariance of $D$-estimators
JO - Kybernetika
PY - 1984
PB - Institute of Information Theory and Automation AS CR
VL - 20
IS - 3
SP - 189
EP - 208
LA - eng
KW - maximum likelihood estimators; D-estimators; f-divergence; convex functions; M-estimators; minimum distance estimators; examples; non- asymptotic aspects; existence; measurability; continuity; invariance; equivariance
UR - http://eudml.org/doc/28738
ER -

References

top
  1. J. Aczél, Lectures on Functional Equations and Their Applications, Academic Press, New York 1966. (1966) MR0208210
  2. D. F. Andrews P. J. Bickel R. R. Hampel P. J. Huber W. H. Rogers, J. W. Tukey, Robust Estimates of Location, Princeton Univ. Press, Princeton, N. J. 1972. (1972) 
  3. D. E. Boekee, The D f -information of order s, In: Trans. 8th Prague Conf. on Inform. Theory, etc., Vol. C, Academia, Prague 1979, 55-68. (1979) MR0557706
  4. D. D. Boos, Minimum distance estimators for location and goodness of fit, J. Amer. Statist. Assoc. 76 (1981), 663-670. (1981) Zbl0475.62030MR0629752
  5. I. Csiszár, Eine Informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten, Publ. Math. Inst. Hungar. Acad. Sci. Ser. AS (1963), 85-108. (1963) MR0164374
  6. I. Csiszár, Information-type measures of difference of probability distributions and indirect observations, Studia Sci. Math. Hungar. 2, (1967) 209-318. (1967) MR0219345
  7. H. Cramér, Mathematical Methods of Statistics, Princeton Univ. Press, Princeton, N. J. 1946. (1946) MR0016588
  8. P. I. Huber, Robust estimation of a location parameter, Ann. Math. Statist. 35 (1964), 73-101. (1964) Zbl0136.39805MR0161415
  9. P. I. Huber, Robust statistics: a review, Ann. Math. Statist. 43 (1972), 1041-1067. (1972) Zbl0254.62023MR0314180
  10. S. Kullback, R. A. Leibler, On information and sufficiency, Ann. Math. Statist. 22 (1951), 79-86. (1951) Zbl0042.38403MR0039968
  11. L. Le Cam, On the information contained in additional observations, Ann. Statist. 2 (1974), 630-649. (1974) Zbl0286.62004MR0436400
  12. R. Š. Lipcer, A. N. Širjaev, Statistics of Random Processes, (in Russian). Nauka, Moscow 1974. (1974) MR0431365
  13. P. W. Millar, Robust estimation via minimum distance methods, Z. Wahrsch. verw. Gebiete 55 (1981), 73-89. (1981) Zbl0461.62036MR0606007
  14. A. M. Mood F. A. Graybill, D. C. Boes, Introduction to the Theory of Statistics, McGraw-Hill, New York 1963. (1963) 
  15. J. Neyman, Contributions to the theory of χ 2 -test, In: Proc. 1st Berkeley Symp. on Math. Statist., etc., Univ. of Calif. Press, Berkeley 1949, 239-273. (1949) 
  16. W. C. Parr, W. R. Schucany, Minimum distance and robust estimation, J. Amer. Statist. Assoc. 75 (1980), 616-624. (1980) Zbl0481.62031MR0590691
  17. C. R. Rao, Asymptotic efficiency and limiting information, In: Proc. 4th Berkeley Symp. on Math. Statist., etc., Vol. 1, Univ. of Calif. Press, Berkeley 1961, 531-546. (1961) Zbl0156.39802MR0133192
  18. C. R. Rao, Criteria of estimation in large samples, Sankhya 25 (1963), 189-206. (1963) Zbl0268.62011MR0175225
  19. P. V. Rao, al., Estimation of shift and center of symmetry based on Kolmogorov-Smirnov statistic, Ann. Statist. 3 (1975), 862-873. (1975) MR0375609
  20. I. Vajda, Limit theorems for total variation of Cartesian product measures, Studia Sci. Math. Hungar. 6 (1971), 317-333. (1971) MR0310950
  21. I. Vajda, On the f-divergence and singularity of probability measures, Period. Math. Hungar. 2 (1972), 223-234. (1972) Zbl0248.62001MR0335163
  22. I. Vajda, χ α -divergence and generalized Fisher information, In: Trans. 6th Prague Conf. on Inform. Theory, etc., Academia, Prague 1973, 873 - 886. (1973) Zbl0297.62003MR0356302
  23. I. Vajda, Theory of Information and Statistical Decision, (in Slovak), Alfa, Bratislava 1981. (1981) 
  24. I. Vajda, A new general approach to minimum distance estimation, In: Trans. 9th Prague Conf. on Inform. Theory, etc., Vol. C, Academia, Prague 1983. (1983) Zbl0552.62016MR0757729
  25. I. Vajda, Minimum divergence principle in statistical estimation, Statistics and Decisions (submitted). Zbl0558.62004
  26. M. Vošvrda, On second order efficiency of minimum divergence estimators, In: Trans. 9th Prague Conf. on Inform. Theory, etc., Vol. C, Academia, Prague 1983. (1983) MR0757940
  27. J. Wolfowitz, The minimum distance method, Ann. Math. Statist. 28 (1957), 75-88. (1957) Zbl0086.35403MR0088126
  28. P. W. Zehna, Invariance of maximum likelihood estimation, Ann. Math. Statist. 37 (1966), 755. (1966) MR0193707

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.