Comparison theorems for temperatures in noncylindrical domains
Eugene B. Fabes; Nicola Garofalo; Sandro Salsa
- Volume: 77, Issue: 1-2, page 1-12
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topFabes, Eugene B., Garofalo, Nicola, and Salsa, Sandro. "Comparison theorems for temperatures in noncylindrical domains." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 77.1-2 (1984): 1-12. <http://eudml.org/doc/287488>.
@article{Fabes1984,
author = {Fabes, Eugene B., Garofalo, Nicola, Salsa, Sandro},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {comparison theorems; divergence type parabolic equations; Lipschitz cylinders; heat equation; interior Harnack principle; positive solutions; Harnack inequality},
language = {eng},
month = {7},
number = {1-2},
pages = {1-12},
publisher = {Accademia Nazionale dei Lincei},
title = {Comparison theorems for temperatures in noncylindrical domains},
url = {http://eudml.org/doc/287488},
volume = {77},
year = {1984},
}
TY - JOUR
AU - Fabes, Eugene B.
AU - Garofalo, Nicola
AU - Salsa, Sandro
TI - Comparison theorems for temperatures in noncylindrical domains
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1984/7//
PB - Accademia Nazionale dei Lincei
VL - 77
IS - 1-2
SP - 1
EP - 12
LA - eng
KW - comparison theorems; divergence type parabolic equations; Lipschitz cylinders; heat equation; interior Harnack principle; positive solutions; Harnack inequality
UR - http://eudml.org/doc/287488
ER -
References
top- BAUMAN, P.E. (1982) - Properties of non-negative solutions of second-order elliptic equations and their adjoints, «Univ. of Minnesota», Ph.D Thesis, June. MR2632044
- CAFFARELLI, L., FABES, E.B., MORTOLA, S. and SALSA, S. (1981) - Boundary behavior of non-negative solutions of elliptic operators in divergence form, «Indiana Univ. Math. Journal», 30, 621-640. Zbl0512.35038MR620271DOI10.1512/iumj.1981.30.30049
- FABES, E.B., GAROFALO, N. and SALSA, S. - A Backward Harnack inequality and Fatou theorem for non-negative solutions of parabolic equations, «Illinois Journal of Mathematics », to appear. Zbl0625.35006MR857210
- FRIEDMAN, A. (1964) - PDE of parabolic type, Prentice Hall. MR181836
- GAROFALO, N. - Second order parabolic equations in non-variational form : Boundary Harnack Principle and comparison theorems for non-negative solutions, «Annali di Mat. Pura ed Applicata», to appear. Zbl0574.35039MR779547DOI10.1007/BF01762548
- JONES, F.B. and Tu, C.C. (1972) - On the existence of kernel functions for the heat equation, «Indiana Univ. Math. Journal», 21, 857-876. Zbl0239.35053MR294902
- 1 KEMPER, J.T. (1972) - Temperatures in several variables: kernel functions, representations, and parabolic boundary values, «TAMS», 167, 243-262. Zbl0238.35039MR294903
- KEMPER, J.T. (1972) - A boundary Harnack Principle for Liptchitz domains and the principle of positive singularities, «CPAM», XXV, 247-255. Zbl0226.31007MR293114
- MOSER, J. (1964) - A Harnack inequality for parabolic differential equations, «CPAM», XVII, 101-134. Zbl0149.06902MR159139
- SALSA, S. (1981) - Some properties of non-negative solutions of parabolic differential operators, «Annali di Mat. Pura ed Applicata», 128, 193-206. Zbl0477.35049MR640782DOI10.1007/BF01789473
- Wu, J.M. (1979) - On parabolic measures and superparabolie functions, «TAMS », 251, 171-185. Zbl0426.35044MR531974DOI10.2307/1998688
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.