The vanishing viscosity method in infinite dimensions

Piermarco Cannarsa; Giuseppe Da Prato

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1989)

  • Volume: 83, Issue: 1, page 79-84
  • ISSN: 1120-6330

Abstract

top
The vanishing viscosity method is adapted to the infinite dimensional case, by showing that the value function of a deterministic optimal control problem can be approximated by the solutions of suitable parabolic equations in Hilbert spaces.

How to cite

top

Cannarsa, Piermarco, and Da Prato, Giuseppe. "The vanishing viscosity method in infinite dimensions." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 83.1 (1989): 79-84. <http://eudml.org/doc/287506>.

@article{Cannarsa1989,
abstract = {The vanishing viscosity method is adapted to the infinite dimensional case, by showing that the value function of a deterministic optimal control problem can be approximated by the solutions of suitable parabolic equations in Hilbert spaces.},
author = {Cannarsa, Piermarco, Da Prato, Giuseppe},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Hamilton-Jacobi equations; Infinite dimensions; Viscosity solution; Optimal control; infinite dimensions; vanishing viscosity method; parabolic equations in Hilbert spaces; approximation},
language = {eng},
month = {12},
number = {1},
pages = {79-84},
publisher = {Accademia Nazionale dei Lincei},
title = {The vanishing viscosity method in infinite dimensions},
url = {http://eudml.org/doc/287506},
volume = {83},
year = {1989},
}

TY - JOUR
AU - Cannarsa, Piermarco
AU - Da Prato, Giuseppe
TI - The vanishing viscosity method in infinite dimensions
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1989/12//
PB - Accademia Nazionale dei Lincei
VL - 83
IS - 1
SP - 79
EP - 84
AB - The vanishing viscosity method is adapted to the infinite dimensional case, by showing that the value function of a deterministic optimal control problem can be approximated by the solutions of suitable parabolic equations in Hilbert spaces.
LA - eng
KW - Hamilton-Jacobi equations; Infinite dimensions; Viscosity solution; Optimal control; infinite dimensions; vanishing viscosity method; parabolic equations in Hilbert spaces; approximation
UR - http://eudml.org/doc/287506
ER -

References

top
  1. BARBU, V. and DA PRATO, G., 1983. Solution of the Bellman equation associated with an infinite dimensional Stochastic control problem and synthesis of optimal control. SIAM J. Control Opt., 21, 4: 531-550. Zbl0511.93072MR704473DOI10.1137/0321032
  2. CANNARSA, P. and DA PRATO, G.Some results on nonlinear optimal control problems and Hamilton-Jacobi equations in infinite dimensions. J. Funct. Anal., (to appear). Zbl0717.49022MR1047576DOI10.1016/0022-1236(90)90079-Z
  3. CANNARSA, P. and DA PRATO, G., 1989. Nonlinear optimal control with infinite horizon for distributed parameter systems and stationary Hamilton-Jacobi equations. SIAM J. Control Opt., 27, 4: 861-875. Zbl0682.49033MR1001924DOI10.1137/0327046
  4. CRANDALL, M.G. and LIONS, P.L., 1983. Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc., 277: 183-186. Zbl0599.35024MR690039DOI10.2307/1999343
  5. CRANDALL, M.G. and LIONS, P.L., 1985. Hamilton-Jacobi equations in infinite dimensions Part I. Uniqueness of Viscosity Solutions. J. Funct. Anal., 62: 379-396. Zbl0627.49013MR794776DOI10.1016/0022-1236(85)90011-4
  6. CRANDALL, M.G. and LIONS, P.L., 1986. Hamilton-Jacobi equations in infinite dimensions. Part II. Existence of Viscosity Solutions. J. Funct. Anal., 65: 368-405. Zbl0639.49021MR826434DOI10.1016/0022-1236(86)90026-1
  7. CRANDALL, M.G. and LIONS, P.L., 1986. Hamilton-Jacobi equations in infinte dimensions. Part III. J. Funct. Anal., 68: 368-405. Zbl0739.49015MR852660DOI10.1016/0022-1236(86)90005-4
  8. CRANDALL, M.G. and LIONS, P.L., 1987. Solutions de visconsitê pour les équations de Hamilton-Jacobi en dimension infinie intervenant dans le contrôle optimal des problèmes d'évolution. C.R. Acad. Sci. Paris, 305: 233-236. Zbl0588.35018MR907950
  9. DALECKII, J.L., 1966. Differential equations with functional derivatives and stochastic equations for generalized random processes. Dokl. Akad. Nauk SSSR, 166: 1035-1038. Zbl0305.35084MR214943
  10. DA PRATO, G., 1987. Some Results on Parabolic Evolution Equations with Infinitely Many Variables. J. Differential Equations, 68, 2: 281-297. Zbl0628.35044MR892028DOI10.1016/0022-0396(87)90196-3
  11. DA PRATO, G., 1985. Some results on Bellman equation in Hilbert spaces and applications to infinite dimensional control problems. In «Stochastic Differential Systems, Filtering and Control», Lecture Notes in Control and Information Sciences n° 69, Proceedings of the IFIP-WG 7/1 Working Conference, Marseille-Luminy, France, March 12-17, 1984. MATIVIER M. and PARDOUX E. Editors: 270-280. Zbl0581.93068MR798330DOI10.1007/BFb0005082
  12. FLEMING, W.H., 1969. The Cauchy problem for a nonlinear first order partial differential equation. J. Differential Equations, 5: 515-530. Zbl0172.13901MR235269
  13. GROSS, L., 1967. Potential theory in Hilbert space. J. Func. Anal., 1: 123-181. Zbl0165.16403MR227747
  14. HAVARNEANU, T., 1985. Existence for the Dynamic Programming equations of control diffusion processes in Hilbert spaces. Nonlinear Anal. T.M.A, 9, n° 6: 619-629. MR794831DOI10.1016/0362-546X(85)90045-8
  15. LIONS, P.L., 1982. Generalized solutions of Hamilton-Jacobi equations. Pitman, Boston. Zbl0497.35001MR667669
  16. PIECH, M.A., 1969. A Fundamental Solution of the Parabolic Equations in Hilbert spaces. J. Funct. Analysis, 3: 85-114. Zbl0169.47103MR251588

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.