The vanishing viscosity method in infinite dimensions
Piermarco Cannarsa; Giuseppe Da Prato
- Volume: 83, Issue: 1, page 79-84
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topCannarsa, Piermarco, and Da Prato, Giuseppe. "The vanishing viscosity method in infinite dimensions." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 83.1 (1989): 79-84. <http://eudml.org/doc/287506>.
@article{Cannarsa1989,
abstract = {The vanishing viscosity method is adapted to the infinite dimensional case, by showing that the value function of a deterministic optimal control problem can be approximated by the solutions of suitable parabolic equations in Hilbert spaces.},
author = {Cannarsa, Piermarco, Da Prato, Giuseppe},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Hamilton-Jacobi equations; Infinite dimensions; Viscosity solution; Optimal control; infinite dimensions; vanishing viscosity method; parabolic equations in Hilbert spaces; approximation},
language = {eng},
month = {12},
number = {1},
pages = {79-84},
publisher = {Accademia Nazionale dei Lincei},
title = {The vanishing viscosity method in infinite dimensions},
url = {http://eudml.org/doc/287506},
volume = {83},
year = {1989},
}
TY - JOUR
AU - Cannarsa, Piermarco
AU - Da Prato, Giuseppe
TI - The vanishing viscosity method in infinite dimensions
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1989/12//
PB - Accademia Nazionale dei Lincei
VL - 83
IS - 1
SP - 79
EP - 84
AB - The vanishing viscosity method is adapted to the infinite dimensional case, by showing that the value function of a deterministic optimal control problem can be approximated by the solutions of suitable parabolic equations in Hilbert spaces.
LA - eng
KW - Hamilton-Jacobi equations; Infinite dimensions; Viscosity solution; Optimal control; infinite dimensions; vanishing viscosity method; parabolic equations in Hilbert spaces; approximation
UR - http://eudml.org/doc/287506
ER -
References
top- BARBU, V. and DA PRATO, G., 1983. Solution of the Bellman equation associated with an infinite dimensional Stochastic control problem and synthesis of optimal control. SIAM J. Control Opt., 21, 4: 531-550. Zbl0511.93072MR704473DOI10.1137/0321032
- CANNARSA, P. and DA PRATO, G.Some results on nonlinear optimal control problems and Hamilton-Jacobi equations in infinite dimensions. J. Funct. Anal., (to appear). Zbl0717.49022MR1047576DOI10.1016/0022-1236(90)90079-Z
- CANNARSA, P. and DA PRATO, G., 1989. Nonlinear optimal control with infinite horizon for distributed parameter systems and stationary Hamilton-Jacobi equations. SIAM J. Control Opt., 27, 4: 861-875. Zbl0682.49033MR1001924DOI10.1137/0327046
- CRANDALL, M.G. and LIONS, P.L., 1983. Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc., 277: 183-186. Zbl0599.35024MR690039DOI10.2307/1999343
- CRANDALL, M.G. and LIONS, P.L., 1985. Hamilton-Jacobi equations in infinite dimensions Part I. Uniqueness of Viscosity Solutions. J. Funct. Anal., 62: 379-396. Zbl0627.49013MR794776DOI10.1016/0022-1236(85)90011-4
- CRANDALL, M.G. and LIONS, P.L., 1986. Hamilton-Jacobi equations in infinite dimensions. Part II. Existence of Viscosity Solutions. J. Funct. Anal., 65: 368-405. Zbl0639.49021MR826434DOI10.1016/0022-1236(86)90026-1
- CRANDALL, M.G. and LIONS, P.L., 1986. Hamilton-Jacobi equations in infinte dimensions. Part III. J. Funct. Anal., 68: 368-405. Zbl0739.49015MR852660DOI10.1016/0022-1236(86)90005-4
- CRANDALL, M.G. and LIONS, P.L., 1987. Solutions de visconsitê pour les équations de Hamilton-Jacobi en dimension infinie intervenant dans le contrôle optimal des problèmes d'évolution. C.R. Acad. Sci. Paris, 305: 233-236. Zbl0588.35018MR907950
- DALECKII, J.L., 1966. Differential equations with functional derivatives and stochastic equations for generalized random processes. Dokl. Akad. Nauk SSSR, 166: 1035-1038. Zbl0305.35084MR214943
- DA PRATO, G., 1987. Some Results on Parabolic Evolution Equations with Infinitely Many Variables. J. Differential Equations, 68, 2: 281-297. Zbl0628.35044MR892028DOI10.1016/0022-0396(87)90196-3
- DA PRATO, G., 1985. Some results on Bellman equation in Hilbert spaces and applications to infinite dimensional control problems. In «Stochastic Differential Systems, Filtering and Control», Lecture Notes in Control and Information Sciences n° 69, Proceedings of the IFIP-WG 7/1 Working Conference, Marseille-Luminy, France, March 12-17, 1984. MATIVIER M. and PARDOUX E. Editors: 270-280. Zbl0581.93068MR798330DOI10.1007/BFb0005082
- FLEMING, W.H., 1969. The Cauchy problem for a nonlinear first order partial differential equation. J. Differential Equations, 5: 515-530. Zbl0172.13901MR235269
- GROSS, L., 1967. Potential theory in Hilbert space. J. Func. Anal., 1: 123-181. Zbl0165.16403MR227747
- HAVARNEANU, T., 1985. Existence for the Dynamic Programming equations of control diffusion processes in Hilbert spaces. Nonlinear Anal. T.M.A, 9, n° 6: 619-629. MR794831DOI10.1016/0362-546X(85)90045-8
- LIONS, P.L., 1982. Generalized solutions of Hamilton-Jacobi equations. Pitman, Boston. Zbl0497.35001MR667669
- PIECH, M.A., 1969. A Fundamental Solution of the Parabolic Equations in Hilbert spaces. J. Funct. Analysis, 3: 85-114. Zbl0169.47103MR251588
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.