On well-posedness for parametric vector quasiequilibrium problems with moving cones

Lam Quoc Anh; Dinh Vinh Hien

Applications of Mathematics (2016)

  • Volume: 61, Issue: 6, page 651-668
  • ISSN: 0862-7940

Abstract

top
In this paper we consider weak and strong quasiequilibrium problems with moving cones in Hausdorff topological vector spaces. Sufficient conditions for well-posedness of these problems are established under relaxed continuity assumptions. All kinds of well-posedness are studied: (generalized) Hadamard well-posedness, (unique) well-posedness under perturbations. Many examples are provided to illustrate the essentialness of the imposed assumptions. As applications of the main results, sufficient conditions for lower and upper bounded equilibrium problems and elastic traffic network problems to be well-posed are derived.

How to cite

top

Anh, Lam Quoc, and Hien, Dinh Vinh. "On well-posedness for parametric vector quasiequilibrium problems with moving cones." Applications of Mathematics 61.6 (2016): 651-668. <http://eudml.org/doc/287532>.

@article{Anh2016,
abstract = {In this paper we consider weak and strong quasiequilibrium problems with moving cones in Hausdorff topological vector spaces. Sufficient conditions for well-posedness of these problems are established under relaxed continuity assumptions. All kinds of well-posedness are studied: (generalized) Hadamard well-posedness, (unique) well-posedness under perturbations. Many examples are provided to illustrate the essentialness of the imposed assumptions. As applications of the main results, sufficient conditions for lower and upper bounded equilibrium problems and elastic traffic network problems to be well-posed are derived.},
author = {Anh, Lam Quoc, Hien, Dinh Vinh},
journal = {Applications of Mathematics},
keywords = {quasiequilibrium problem; lower bounded equilibrium problem; upper bounded equilibrium problem; network traffic problem; well-posedness; $C$-upper semicontinuity; $C$-lower semicontinuity; quasiequilibrium problem; lower bounded equilibrium problem; upper bounded equilibrium problem; network traffic problem; well-posedness; -upper semicontinuity; -lower semicontinuity},
language = {eng},
number = {6},
pages = {651-668},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On well-posedness for parametric vector quasiequilibrium problems with moving cones},
url = {http://eudml.org/doc/287532},
volume = {61},
year = {2016},
}

TY - JOUR
AU - Anh, Lam Quoc
AU - Hien, Dinh Vinh
TI - On well-posedness for parametric vector quasiequilibrium problems with moving cones
JO - Applications of Mathematics
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 6
SP - 651
EP - 668
AB - In this paper we consider weak and strong quasiequilibrium problems with moving cones in Hausdorff topological vector spaces. Sufficient conditions for well-posedness of these problems are established under relaxed continuity assumptions. All kinds of well-posedness are studied: (generalized) Hadamard well-posedness, (unique) well-posedness under perturbations. Many examples are provided to illustrate the essentialness of the imposed assumptions. As applications of the main results, sufficient conditions for lower and upper bounded equilibrium problems and elastic traffic network problems to be well-posed are derived.
LA - eng
KW - quasiequilibrium problem; lower bounded equilibrium problem; upper bounded equilibrium problem; network traffic problem; well-posedness; $C$-upper semicontinuity; $C$-lower semicontinuity; quasiequilibrium problem; lower bounded equilibrium problem; upper bounded equilibrium problem; network traffic problem; well-posedness; -upper semicontinuity; -lower semicontinuity
UR - http://eudml.org/doc/287532
ER -

References

top
  1. Mansour, M. Ait, Riahi, H., 10.1016/j.jmaa.2004.10.011, J. Math. Anal. Appl. 306 (2005), 684-691. (2005) MR2136342DOI10.1016/j.jmaa.2004.10.011
  2. Mansour, M. Ait, Scrimali, L., 10.1007/s10898-007-9190-9, J. Glob. Optim. 40 (2008), 175-184. (2008) MR2373550DOI10.1007/s10898-007-9190-9
  3. Anh, L. Q., Khanh, P. Q., 10.1016/j.jmaa.2004.03.014, J. Math. Anal. Appl. 294 (2004), 699-711. (2004) Zbl1048.49004MR2061352DOI10.1016/j.jmaa.2004.03.014
  4. Anh, L. Q., Khanh, P. Q., 10.1016/j.jmaa.2005.08.018, J. Math. Anal. Appl. 321 (2006), 308-315. (2006) Zbl1104.90041MR2236560DOI10.1016/j.jmaa.2005.08.018
  5. Anh, L. Q., Khanh, P. Q., 10.1080/01630560701873068, Numer. Funct. Anal. Optim. 29 (2008), 24-42. (2008) Zbl1211.90243MR2387836DOI10.1080/01630560701873068
  6. Anh, L. Q., Khanh, P. Q., 10.1007/s10898-009-9422-2, J. Glob. Optim. 46 (2010), 247-259. (2010) Zbl1187.90284MR2578813DOI10.1007/s10898-009-9422-2
  7. Anh, L. Q., Khanh, P. Q., Van, D. T. M., 10.1016/j.camwa.2011.06.047, Comput. Math. Appl. 62 (2011), 2045-2057. (2011) Zbl1231.49022MR2834828DOI10.1016/j.camwa.2011.06.047
  8. Anh, L. Q., Khanh, P. Q., Van, D. T. M., 10.1007/s10957-011-9963-7, J. Optim. Theory Appl. 153 (2012), 42-59. (2012) Zbl1254.90244MR2892544DOI10.1007/s10957-011-9963-7
  9. Anh, L. Q., Khanh, P. Q., Van, D. T. M., Yao, J.-C., 10.11650/twjm/1500405398, Taiwanese J. Math. 13 (2009), 713-737. (2009) Zbl1176.49030MR2510823DOI10.11650/twjm/1500405398
  10. Ansari, Q. H., Flores-Bazán, F., 10.1016/S0022-247X(02)00535-8, J. Math. Anal. Appl. 277 (2003), 246-256. (2003) Zbl1022.90023MR1954474DOI10.1016/S0022-247X(02)00535-8
  11. Aubin, J.-P., Frankowska, H., Set-Valued Analysis, Modern Birkhäuser Classics Birkhäuser, Boston (2009). (2009) Zbl1168.49014MR2458436
  12. Bianchi, M., Kassay, G., Pini, R., 10.1016/j.na.2009.06.081, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 460-468. (2010) Zbl1180.49028MR2574955DOI10.1016/j.na.2009.06.081
  13. Bianchi, M., Pini, R., 10.1016/S0167-6377(03)00051-8, Oper. Rest. Lett. 31 (2003), 445-450. (2003) Zbl1112.90082MR2003818DOI10.1016/S0167-6377(03)00051-8
  14. Bianchi, M., Pini, R., 10.1007/s10957-004-6466-9, J. Optimization Theory Appl. 124 (2005), 79-92. (2005) Zbl1064.49004MR2129262DOI10.1007/s10957-004-6466-9
  15. Bianchi, M., Pini, R., 10.1080/02331930600662732, Optimization 55 (2006), 221-230. (2006) Zbl1149.90156MR2238411DOI10.1080/02331930600662732
  16. Blum, E., Oettli, W., From optimization and variational inequalities to equilibrium problems, Math. Stud. 63 (1994), 123-145. (1994) Zbl0888.49007MR1292380
  17. Burachik, R., Kassay, G., 10.1016/j.na.2012.07.020, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 6456-6464. (2012) MR2965230DOI10.1016/j.na.2012.07.020
  18. Cap{ă}t{ă}, A., Kassay, G., 10.11650/twjm/1500406180, Taiwanese J. Math. 15 (2011), 365-380. (2011) Zbl1247.90261MR2780290DOI10.11650/twjm/1500406180
  19. Chadli, O., Chiang, Y., Yao, J. C., 10.1016/S0893-9659(01)00139-2, Appl. Math. Lett. 15 (2002), 327-331. (2002) Zbl1175.90411MR1891555DOI10.1016/S0893-9659(01)00139-2
  20. Luca, M. De, Generalized quasi-variational inequalities and traffic equilibrium problem, Variational Inequalities and Network Equilibrium Problems F. Giannessi Proc. Conf., Erice, 1994 Plenum, New York (1995), 45-54. (1995) Zbl0847.49007MR1331401
  21. Ding, X., 10.1016/S0252-9602(17)30205-9, Acta Math. Sci., Ser. B, Engl. Ed. 25 (2005), 658-662. (2005) Zbl1082.49007MR2175931DOI10.1016/S0252-9602(17)30205-9
  22. Rouhani, B. Djafari, Tarafdar, E., Watson, P. J., 10.1007/s10957-005-2660-7, J. Optimization Theory Appl. 126 (2005), 97-107. (2005) MR2158433DOI10.1007/s10957-005-2660-7
  23. Fang, Y.-P., Hu, R., Huang, N.-J., 10.1016/j.camwa.2007.03.019, Comput. Math. Appl. 55 (2008), 89-100. (2008) Zbl1179.49007MR2378503DOI10.1016/j.camwa.2007.03.019
  24. Fang, Y.-P., Huang, N.-J., Yao, J.-C., 10.1007/s10898-007-9169-6, J. Global Optim. 41 (2008), 117-133. (2008) Zbl1149.49009MR2386599DOI10.1007/s10898-007-9169-6
  25. Flores-Baz{á}n, F., 10.1137/S1052623499364134, SIAM J. Optim. 11 (2001), 675-690. (2001) MR1814037DOI10.1137/S1052623499364134
  26. Giannessi, F., Theorems of alternative, quadratic programs and complementarity problems, Variational Inequalities and Complementarity Problems Proc. Int. School Math., Erice, 1978 Wiley, Chichester (1980), 151-186. (1980) Zbl0484.90081MR0578747
  27. Hadamard, J., Sur le problèmes aux dérivées partielles et leur signification physique, Bull. Univ. Princeton 13 (1902), 49-52 French. (1902) 
  28. Hai, N. X., Khanh, P. Q., 10.1007/s10957-007-9170-8, J. Optim. Theory Appl. 133 (2007), 317-327. (2007) Zbl1146.49004MR2333817DOI10.1007/s10957-007-9170-8
  29. Huang, N.-J., Long, X.-J., Zhao, C.-W., 10.3934/jimo.2009.5.341, J. Ind. Manag. Optim. 5 (2009), 341-349. (2009) Zbl1192.49028MR2497238DOI10.3934/jimo.2009.5.341
  30. Ioffe, A., Lucchetti, R. E., 10.1007/s10107-005-0625-0, Math. Program. 104 (2005), 483-499. (2005) Zbl1082.49030MR2179247DOI10.1007/s10107-005-0625-0
  31. Iusem, A. N., Kassay, G., Sosa, W., 10.1007/s10107-007-0125-5, Math. Program. 116 (2009), 259-273. (2009) Zbl1158.90009MR2421281DOI10.1007/s10107-007-0125-5
  32. Iusem, A. N., Sosa, W., 10.1080/0233193031000120039, Optimization 52 (2003), 301-316. (2003) Zbl1176.90640MR1995678DOI10.1080/0233193031000120039
  33. Kimura, K., Liou, Y.-C., Wu, S.-Y., Yao, J.-C., 10.3934/jimo.2008.4.313, J. Ind. Manag. Optim. 4 (2008), 313-327. (2008) Zbl1161.90479MR2386077DOI10.3934/jimo.2008.4.313
  34. Lignola, M. B., Morgan, J., 10.1007/s10898-006-9020-5, J. Glob. Optim. 36 (2006), 439-459. (2006) Zbl1105.49029MR2263177DOI10.1007/s10898-006-9020-5
  35. Long, X.-J., Huang, N.-J., Teo, K.-L., 10.1016/j.mcm.2007.04.013, Math. Comput. Modelling 47 (2008), 445-451. (2008) Zbl1171.90521MR2378849DOI10.1016/j.mcm.2007.04.013
  36. Maugeri, A., Variational and quasi-variational inequalities in network flow models. Recent developments in theory and algorithms, Variational Inequalities and Network Equilibrium Problems Proc. Conf., Erice, 1994 Plenum, New York (1995), 195-211. (1995) Zbl0847.49010MR1331411
  37. Muu, L. D., Oettli, W., 10.1016/0362-546X(92)90159-C, Nonlinear Anal., Theory Methods Appl. 18 (1992), 1159-1166. (1992) Zbl0773.90092MR1171603DOI10.1016/0362-546X(92)90159-C
  38. Noor, M. A., Noor, K. I., Equilibrium problems and variational inequalities, Mathematica 47(70) (2005), 89-100. (2005) Zbl1120.49008MR2165082
  39. Revalski, J. P., Zhivkov, N. V., 10.1007/BF00952826, J. Optimization Theory Appl. 76 (1993), 145-163. (1993) Zbl0798.49031MR1202586DOI10.1007/BF00952826
  40. Sadeqi, I., Alizadeh, C. G., 10.1016/j.na.2010.11.027, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 2226-2234. (2011) Zbl1233.90266MR2781752DOI10.1016/j.na.2010.11.027
  41. Smith, M. J., 10.1016/0191-2615(79)90022-5, Transportation Res. Part B 13 (1979), 295-304. (1979) MR0551841DOI10.1016/0191-2615(79)90022-5
  42. Strodiot, J. J., Nguyen, T. T. V., Nguyen, V. H., 10.1007/s10898-011-9814-y, J. Glob. Optim. 56 (2013), 373-397. (2013) Zbl1269.49013MR3063171DOI10.1007/s10898-011-9814-y
  43. Tikhonov, A. N., 10.1016/0041-5553(66)90003-6, U.S.S.R. Comput. Math. Math. Phys. 6 (1966), 28-33; translation from Zh. Vychisl. Mat. Mat. Fiz. 6 631-634 (1966), Russian. (1966) MR0198308DOI10.1016/0041-5553(66)90003-6
  44. Wardrop, J. G., Some theoretical aspects of road traffic research, Proceedings of the Institute of Civil Engineers, Part II (1952), 325-378. (1952) 
  45. Zhang, C., 10.1016/j.na.2005.03.019, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods (electronic only) 63 (2005), e2377--e2385. (2005) MR2160254DOI10.1016/j.na.2005.03.019
  46. Zhang, C., Li, J., Feng, Z., The existence and the stability of solutions for equilibrium problems with lower and upper bounds, J. Nonlinear Anal. Appl. 2012 (2012), Article ID jnaa-00135, 13 pages. (2012) 
  47. Zolezzi, T., 10.1016/0362-546X(94)00142-5, Nonlinear Anal., Theory Methods Appl. 25 (1995), 437-453. (1995) Zbl0841.49005MR1338796DOI10.1016/0362-546X(94)00142-5
  48. Zolezzi, T., 10.1023/A:1010961617177, Ann. Oper. Res. 101 (2001), 351-361. (2001) Zbl0996.90081MR1852519DOI10.1023/A:1010961617177
  49. Zolezzi, T., 10.1002/zamm.200310113, ZAMM, Z. Angew. Math. Mech. 84 (2004), 435-443. (2004) Zbl1045.49025MR2069910DOI10.1002/zamm.200310113

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.