On well-posedness for parametric vector quasiequilibrium problems with moving cones
Applications of Mathematics (2016)
- Volume: 61, Issue: 6, page 651-668
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topAnh, Lam Quoc, and Hien, Dinh Vinh. "On well-posedness for parametric vector quasiequilibrium problems with moving cones." Applications of Mathematics 61.6 (2016): 651-668. <http://eudml.org/doc/287532>.
@article{Anh2016,
abstract = {In this paper we consider weak and strong quasiequilibrium problems with moving cones in Hausdorff topological vector spaces. Sufficient conditions for well-posedness of these problems are established under relaxed continuity assumptions. All kinds of well-posedness are studied: (generalized) Hadamard well-posedness, (unique) well-posedness under perturbations. Many examples are provided to illustrate the essentialness of the imposed assumptions. As applications of the main results, sufficient conditions for lower and upper bounded equilibrium problems and elastic traffic network problems to be well-posed are derived.},
author = {Anh, Lam Quoc, Hien, Dinh Vinh},
journal = {Applications of Mathematics},
keywords = {quasiequilibrium problem; lower bounded equilibrium problem; upper bounded equilibrium problem; network traffic problem; well-posedness; $C$-upper semicontinuity; $C$-lower semicontinuity; quasiequilibrium problem; lower bounded equilibrium problem; upper bounded equilibrium problem; network traffic problem; well-posedness; -upper semicontinuity; -lower semicontinuity},
language = {eng},
number = {6},
pages = {651-668},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On well-posedness for parametric vector quasiequilibrium problems with moving cones},
url = {http://eudml.org/doc/287532},
volume = {61},
year = {2016},
}
TY - JOUR
AU - Anh, Lam Quoc
AU - Hien, Dinh Vinh
TI - On well-posedness for parametric vector quasiequilibrium problems with moving cones
JO - Applications of Mathematics
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 6
SP - 651
EP - 668
AB - In this paper we consider weak and strong quasiequilibrium problems with moving cones in Hausdorff topological vector spaces. Sufficient conditions for well-posedness of these problems are established under relaxed continuity assumptions. All kinds of well-posedness are studied: (generalized) Hadamard well-posedness, (unique) well-posedness under perturbations. Many examples are provided to illustrate the essentialness of the imposed assumptions. As applications of the main results, sufficient conditions for lower and upper bounded equilibrium problems and elastic traffic network problems to be well-posed are derived.
LA - eng
KW - quasiequilibrium problem; lower bounded equilibrium problem; upper bounded equilibrium problem; network traffic problem; well-posedness; $C$-upper semicontinuity; $C$-lower semicontinuity; quasiequilibrium problem; lower bounded equilibrium problem; upper bounded equilibrium problem; network traffic problem; well-posedness; -upper semicontinuity; -lower semicontinuity
UR - http://eudml.org/doc/287532
ER -
References
top- Mansour, M. Ait, Riahi, H., 10.1016/j.jmaa.2004.10.011, J. Math. Anal. Appl. 306 (2005), 684-691. (2005) MR2136342DOI10.1016/j.jmaa.2004.10.011
- Mansour, M. Ait, Scrimali, L., 10.1007/s10898-007-9190-9, J. Glob. Optim. 40 (2008), 175-184. (2008) MR2373550DOI10.1007/s10898-007-9190-9
- Anh, L. Q., Khanh, P. Q., 10.1016/j.jmaa.2004.03.014, J. Math. Anal. Appl. 294 (2004), 699-711. (2004) Zbl1048.49004MR2061352DOI10.1016/j.jmaa.2004.03.014
- Anh, L. Q., Khanh, P. Q., 10.1016/j.jmaa.2005.08.018, J. Math. Anal. Appl. 321 (2006), 308-315. (2006) Zbl1104.90041MR2236560DOI10.1016/j.jmaa.2005.08.018
- Anh, L. Q., Khanh, P. Q., 10.1080/01630560701873068, Numer. Funct. Anal. Optim. 29 (2008), 24-42. (2008) Zbl1211.90243MR2387836DOI10.1080/01630560701873068
- Anh, L. Q., Khanh, P. Q., 10.1007/s10898-009-9422-2, J. Glob. Optim. 46 (2010), 247-259. (2010) Zbl1187.90284MR2578813DOI10.1007/s10898-009-9422-2
- Anh, L. Q., Khanh, P. Q., Van, D. T. M., 10.1016/j.camwa.2011.06.047, Comput. Math. Appl. 62 (2011), 2045-2057. (2011) Zbl1231.49022MR2834828DOI10.1016/j.camwa.2011.06.047
- Anh, L. Q., Khanh, P. Q., Van, D. T. M., 10.1007/s10957-011-9963-7, J. Optim. Theory Appl. 153 (2012), 42-59. (2012) Zbl1254.90244MR2892544DOI10.1007/s10957-011-9963-7
- Anh, L. Q., Khanh, P. Q., Van, D. T. M., Yao, J.-C., 10.11650/twjm/1500405398, Taiwanese J. Math. 13 (2009), 713-737. (2009) Zbl1176.49030MR2510823DOI10.11650/twjm/1500405398
- Ansari, Q. H., Flores-Bazán, F., 10.1016/S0022-247X(02)00535-8, J. Math. Anal. Appl. 277 (2003), 246-256. (2003) Zbl1022.90023MR1954474DOI10.1016/S0022-247X(02)00535-8
- Aubin, J.-P., Frankowska, H., Set-Valued Analysis, Modern Birkhäuser Classics Birkhäuser, Boston (2009). (2009) Zbl1168.49014MR2458436
- Bianchi, M., Kassay, G., Pini, R., 10.1016/j.na.2009.06.081, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 460-468. (2010) Zbl1180.49028MR2574955DOI10.1016/j.na.2009.06.081
- Bianchi, M., Pini, R., 10.1016/S0167-6377(03)00051-8, Oper. Rest. Lett. 31 (2003), 445-450. (2003) Zbl1112.90082MR2003818DOI10.1016/S0167-6377(03)00051-8
- Bianchi, M., Pini, R., 10.1007/s10957-004-6466-9, J. Optimization Theory Appl. 124 (2005), 79-92. (2005) Zbl1064.49004MR2129262DOI10.1007/s10957-004-6466-9
- Bianchi, M., Pini, R., 10.1080/02331930600662732, Optimization 55 (2006), 221-230. (2006) Zbl1149.90156MR2238411DOI10.1080/02331930600662732
- Blum, E., Oettli, W., From optimization and variational inequalities to equilibrium problems, Math. Stud. 63 (1994), 123-145. (1994) Zbl0888.49007MR1292380
- Burachik, R., Kassay, G., 10.1016/j.na.2012.07.020, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 6456-6464. (2012) MR2965230DOI10.1016/j.na.2012.07.020
- Cap{ă}t{ă}, A., Kassay, G., 10.11650/twjm/1500406180, Taiwanese J. Math. 15 (2011), 365-380. (2011) Zbl1247.90261MR2780290DOI10.11650/twjm/1500406180
- Chadli, O., Chiang, Y., Yao, J. C., 10.1016/S0893-9659(01)00139-2, Appl. Math. Lett. 15 (2002), 327-331. (2002) Zbl1175.90411MR1891555DOI10.1016/S0893-9659(01)00139-2
- Luca, M. De, Generalized quasi-variational inequalities and traffic equilibrium problem, Variational Inequalities and Network Equilibrium Problems F. Giannessi Proc. Conf., Erice, 1994 Plenum, New York (1995), 45-54. (1995) Zbl0847.49007MR1331401
- Ding, X., 10.1016/S0252-9602(17)30205-9, Acta Math. Sci., Ser. B, Engl. Ed. 25 (2005), 658-662. (2005) Zbl1082.49007MR2175931DOI10.1016/S0252-9602(17)30205-9
- Rouhani, B. Djafari, Tarafdar, E., Watson, P. J., 10.1007/s10957-005-2660-7, J. Optimization Theory Appl. 126 (2005), 97-107. (2005) MR2158433DOI10.1007/s10957-005-2660-7
- Fang, Y.-P., Hu, R., Huang, N.-J., 10.1016/j.camwa.2007.03.019, Comput. Math. Appl. 55 (2008), 89-100. (2008) Zbl1179.49007MR2378503DOI10.1016/j.camwa.2007.03.019
- Fang, Y.-P., Huang, N.-J., Yao, J.-C., 10.1007/s10898-007-9169-6, J. Global Optim. 41 (2008), 117-133. (2008) Zbl1149.49009MR2386599DOI10.1007/s10898-007-9169-6
- Flores-Baz{á}n, F., 10.1137/S1052623499364134, SIAM J. Optim. 11 (2001), 675-690. (2001) MR1814037DOI10.1137/S1052623499364134
- Giannessi, F., Theorems of alternative, quadratic programs and complementarity problems, Variational Inequalities and Complementarity Problems Proc. Int. School Math., Erice, 1978 Wiley, Chichester (1980), 151-186. (1980) Zbl0484.90081MR0578747
- Hadamard, J., Sur le problèmes aux dérivées partielles et leur signification physique, Bull. Univ. Princeton 13 (1902), 49-52 French. (1902)
- Hai, N. X., Khanh, P. Q., 10.1007/s10957-007-9170-8, J. Optim. Theory Appl. 133 (2007), 317-327. (2007) Zbl1146.49004MR2333817DOI10.1007/s10957-007-9170-8
- Huang, N.-J., Long, X.-J., Zhao, C.-W., 10.3934/jimo.2009.5.341, J. Ind. Manag. Optim. 5 (2009), 341-349. (2009) Zbl1192.49028MR2497238DOI10.3934/jimo.2009.5.341
- Ioffe, A., Lucchetti, R. E., 10.1007/s10107-005-0625-0, Math. Program. 104 (2005), 483-499. (2005) Zbl1082.49030MR2179247DOI10.1007/s10107-005-0625-0
- Iusem, A. N., Kassay, G., Sosa, W., 10.1007/s10107-007-0125-5, Math. Program. 116 (2009), 259-273. (2009) Zbl1158.90009MR2421281DOI10.1007/s10107-007-0125-5
- Iusem, A. N., Sosa, W., 10.1080/0233193031000120039, Optimization 52 (2003), 301-316. (2003) Zbl1176.90640MR1995678DOI10.1080/0233193031000120039
- Kimura, K., Liou, Y.-C., Wu, S.-Y., Yao, J.-C., 10.3934/jimo.2008.4.313, J. Ind. Manag. Optim. 4 (2008), 313-327. (2008) Zbl1161.90479MR2386077DOI10.3934/jimo.2008.4.313
- Lignola, M. B., Morgan, J., 10.1007/s10898-006-9020-5, J. Glob. Optim. 36 (2006), 439-459. (2006) Zbl1105.49029MR2263177DOI10.1007/s10898-006-9020-5
- Long, X.-J., Huang, N.-J., Teo, K.-L., 10.1016/j.mcm.2007.04.013, Math. Comput. Modelling 47 (2008), 445-451. (2008) Zbl1171.90521MR2378849DOI10.1016/j.mcm.2007.04.013
- Maugeri, A., Variational and quasi-variational inequalities in network flow models. Recent developments in theory and algorithms, Variational Inequalities and Network Equilibrium Problems Proc. Conf., Erice, 1994 Plenum, New York (1995), 195-211. (1995) Zbl0847.49010MR1331411
- Muu, L. D., Oettli, W., 10.1016/0362-546X(92)90159-C, Nonlinear Anal., Theory Methods Appl. 18 (1992), 1159-1166. (1992) Zbl0773.90092MR1171603DOI10.1016/0362-546X(92)90159-C
- Noor, M. A., Noor, K. I., Equilibrium problems and variational inequalities, Mathematica 47(70) (2005), 89-100. (2005) Zbl1120.49008MR2165082
- Revalski, J. P., Zhivkov, N. V., 10.1007/BF00952826, J. Optimization Theory Appl. 76 (1993), 145-163. (1993) Zbl0798.49031MR1202586DOI10.1007/BF00952826
- Sadeqi, I., Alizadeh, C. G., 10.1016/j.na.2010.11.027, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 2226-2234. (2011) Zbl1233.90266MR2781752DOI10.1016/j.na.2010.11.027
- Smith, M. J., 10.1016/0191-2615(79)90022-5, Transportation Res. Part B 13 (1979), 295-304. (1979) MR0551841DOI10.1016/0191-2615(79)90022-5
- Strodiot, J. J., Nguyen, T. T. V., Nguyen, V. H., 10.1007/s10898-011-9814-y, J. Glob. Optim. 56 (2013), 373-397. (2013) Zbl1269.49013MR3063171DOI10.1007/s10898-011-9814-y
- Tikhonov, A. N., 10.1016/0041-5553(66)90003-6, U.S.S.R. Comput. Math. Math. Phys. 6 (1966), 28-33; translation from Zh. Vychisl. Mat. Mat. Fiz. 6 631-634 (1966), Russian. (1966) MR0198308DOI10.1016/0041-5553(66)90003-6
- Wardrop, J. G., Some theoretical aspects of road traffic research, Proceedings of the Institute of Civil Engineers, Part II (1952), 325-378. (1952)
- Zhang, C., 10.1016/j.na.2005.03.019, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods (electronic only) 63 (2005), e2377--e2385. (2005) MR2160254DOI10.1016/j.na.2005.03.019
- Zhang, C., Li, J., Feng, Z., The existence and the stability of solutions for equilibrium problems with lower and upper bounds, J. Nonlinear Anal. Appl. 2012 (2012), Article ID jnaa-00135, 13 pages. (2012)
- Zolezzi, T., 10.1016/0362-546X(94)00142-5, Nonlinear Anal., Theory Methods Appl. 25 (1995), 437-453. (1995) Zbl0841.49005MR1338796DOI10.1016/0362-546X(94)00142-5
- Zolezzi, T., 10.1023/A:1010961617177, Ann. Oper. Res. 101 (2001), 351-361. (2001) Zbl0996.90081MR1852519DOI10.1023/A:1010961617177
- Zolezzi, T., 10.1002/zamm.200310113, ZAMM, Z. Angew. Math. Mech. 84 (2004), 435-443. (2004) Zbl1045.49025MR2069910DOI10.1002/zamm.200310113
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.