Strong laws of large numbers for sequences of blockwise and pairwise -dependent random variables in metris spaces
Nguyen Van Quang; Pham Tri Nguyen
Applications of Mathematics (2016)
- Volume: 61, Issue: 6, page 669-684
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topQuang, Nguyen Van, and Nguyen, Pham Tri. "Strong laws of large numbers for sequences of blockwise and pairwise $m$-dependent random variables in metris spaces." Applications of Mathematics 61.6 (2016): 669-684. <http://eudml.org/doc/287533>.
@article{Quang2016,
abstract = {The aim of the paper is to establish strong laws of large numbers for sequences of blockwise and pairwise $m$-dependent random variables in a convex combination space with or without compactly uniformly integrable condition. Some of our results are even new in the case of real random variables.},
author = {Quang, Nguyen Van, Nguyen, Pham Tri},
journal = {Applications of Mathematics},
keywords = {strong law of large numbers; convex combination space; pairwise $m$-dependent; blockwise $m$-dependent; compactly uniformly integrable; strong law of large numbers; convex combination space; pairwise $m$-dependent; blockwise -dependent; compactly uniformly integrable},
language = {eng},
number = {6},
pages = {669-684},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Strong laws of large numbers for sequences of blockwise and pairwise $m$-dependent random variables in metris spaces},
url = {http://eudml.org/doc/287533},
volume = {61},
year = {2016},
}
TY - JOUR
AU - Quang, Nguyen Van
AU - Nguyen, Pham Tri
TI - Strong laws of large numbers for sequences of blockwise and pairwise $m$-dependent random variables in metris spaces
JO - Applications of Mathematics
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 6
SP - 669
EP - 684
AB - The aim of the paper is to establish strong laws of large numbers for sequences of blockwise and pairwise $m$-dependent random variables in a convex combination space with or without compactly uniformly integrable condition. Some of our results are even new in the case of real random variables.
LA - eng
KW - strong law of large numbers; convex combination space; pairwise $m$-dependent; blockwise $m$-dependent; compactly uniformly integrable; strong law of large numbers; convex combination space; pairwise $m$-dependent; blockwise -dependent; compactly uniformly integrable
UR - http://eudml.org/doc/287533
ER -
References
top- Bo, Z., 10.1016/S0167-7152(97)00157-0, Statist. Probab. Lett. 38 (1998), 83-88. (1998) Zbl0908.60009MR1629524DOI10.1016/S0167-7152(97)00157-0
- Choi, B. D., Sung, S. H., On convergence of , , for pairwise independent random variables, Bull. Korean Math. Soc. 22 (1985), 79-82. (1985) MR0826361
- Etemadi, N., 10.1007/BF01013465, Z. Wahrscheinlichkeitstheor. Verw. Geb. 55 (1981), 119-122. (1981) Zbl0438.60027MR0606010DOI10.1007/BF01013465
- Gaposhkin, V. F., 10.1137/1139053, Theory Probab. Appl. 39 677-684 (1994), translation from Teor. Veroyatn. Primen. Russian 39 804-812 (1994). (1994) Zbl0847.60022MR1347654DOI10.1137/1139053
- Móricz, F., 10.2307/2046676, Proc. Am. Math. Soc. 101 (1987), 709-715. (1987) MR0911038DOI10.2307/2046676
- Quang, N. V., Thuan, N. T., 10.1007/s10474-011-0168-1, Acta Math. Hung. 134 (2012), 543-564. (2012) Zbl1265.60057MR2886225DOI10.1007/s10474-011-0168-1
- Terán, P., Molchanov, I., 10.1007/s10959-006-0043-0, J. Theor. Probab. 19 (2006), 875-898. (2006) Zbl1113.60014MR2279607DOI10.1007/s10959-006-0043-0
- Thanh, L. V., Strong laws of large numbers for sequences of blockwise and pairwise -dependent random variables, Bull. Inst. Math., Acad. Sin. 33 (2005), 397-405. (2005) Zbl1084.60506MR2184437
- Thuan, N. T., Quang, N. V., Nguyen, P. T., Complete convergence for arrays of rowwise independent random variables and fuzzy random variables in convex combination spaces, Fuzzy Sets Syst. 250 (2014), 52-68. (2014) Zbl1334.60041MR3223442
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.