Augmentation quotients for Burnside rings of generalized dihedral groups
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 4, page 1165-1175
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChang, Shan. "Augmentation quotients for Burnside rings of generalized dihedral groups." Czechoslovak Mathematical Journal 66.4 (2016): 1165-1175. <http://eudml.org/doc/287538>.
@article{Chang2016,
abstract = {Let $H$ be a finite abelian group of odd order, $\mathcal \{D\}$ be its generalized dihedral group, i.e., the semidirect product of $C_2$ acting on $H$ by inverting elements, where $C_2$ is the cyclic group of order two. Let $\Omega (\mathcal \{D\})$ be the Burnside ring of $\mathcal \{D\}$, $\Delta (\mathcal \{D\})$ be the augmentation ideal of $\Omega (\mathcal \{D\})$. Denote by $\Delta ^n(\mathcal \{D\})$ and $Q_n(\mathcal \{D\})$ the $n$th power of $\Delta (\mathcal \{D\})$ and the $n$th consecutive quotient group $\Delta ^n(\mathcal \{D\})/\Delta ^\{n+1\}(\mathcal \{D\})$, respectively. This paper provides an explicit $\mathbb \{Z\}$-basis for $\Delta ^n(\mathcal \{D\})$ and determines the isomorphism class of $Q_n(\mathcal \{D\})$ for each positive integer $n$.},
author = {Chang, Shan},
journal = {Czechoslovak Mathematical Journal},
keywords = {generalized dihedral group; Burnside ring; augmentation ideal; augmentation quotient; generalized dihedral group; Burnside ring; augmentation ideal; augmentation quotient},
language = {eng},
number = {4},
pages = {1165-1175},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Augmentation quotients for Burnside rings of generalized dihedral groups},
url = {http://eudml.org/doc/287538},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Chang, Shan
TI - Augmentation quotients for Burnside rings of generalized dihedral groups
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 4
SP - 1165
EP - 1175
AB - Let $H$ be a finite abelian group of odd order, $\mathcal {D}$ be its generalized dihedral group, i.e., the semidirect product of $C_2$ acting on $H$ by inverting elements, where $C_2$ is the cyclic group of order two. Let $\Omega (\mathcal {D})$ be the Burnside ring of $\mathcal {D}$, $\Delta (\mathcal {D})$ be the augmentation ideal of $\Omega (\mathcal {D})$. Denote by $\Delta ^n(\mathcal {D})$ and $Q_n(\mathcal {D})$ the $n$th power of $\Delta (\mathcal {D})$ and the $n$th consecutive quotient group $\Delta ^n(\mathcal {D})/\Delta ^{n+1}(\mathcal {D})$, respectively. This paper provides an explicit $\mathbb {Z}$-basis for $\Delta ^n(\mathcal {D})$ and determines the isomorphism class of $Q_n(\mathcal {D})$ for each positive integer $n$.
LA - eng
KW - generalized dihedral group; Burnside ring; augmentation ideal; augmentation quotient; generalized dihedral group; Burnside ring; augmentation ideal; augmentation quotient
UR - http://eudml.org/doc/287538
ER -
References
top- Bak, A., Tang, G., 10.1016/j.aim.2003.11.002, Adv. Math. 189 (2004), 1-37. (2004) Zbl1068.16032MR2093478DOI10.1016/j.aim.2003.11.002
- Chang, S., Augmentation quotients for complex representation rings of point groups, J. Anhui Univ., Nat. Sci. 38 (2014), 13-19 Chinese. English summary. (2014) Zbl1324.20002MR3363485
- Chang, S., 10.1007/s11401-016-1017-x, Chin. Ann. Math., Ser. B. 37 (2016), 571-584. (2016) Zbl1351.20003MR3516112DOI10.1007/s11401-016-1017-x
- Chang, S., Chen, H., Tang, G., 10.1007/s11464-011-0162-5, Front. Math. China 7 (2012), 1-18. (2012) Zbl1269.20001MR2876895DOI10.1007/s11464-011-0162-5
- Chang, S., Tang, G., 10.1016/j.jalgebra.2010.08.020, J. Algebra 327 (2011), 466-488. (2011) Zbl1232.20006MR2746045DOI10.1016/j.jalgebra.2010.08.020
- Magurn, B. A., An Algebraic Introduction to -Theory, Encyclopedia of Mathematics and Its Applications 87 Cambridge University Press, Cambridge (2002). (2002) Zbl1002.19001MR1906572
- Parmenter, M. M., A basis for powers of the augmentation ideal, Algebra Colloq. 8 (2001), 121-128. (2001) Zbl0979.16015MR1838512
- Tang, G., 10.1023/A:1017572832381, -Theory 23 (2001), 31-39. (2001) Zbl0990.16024MR1852453DOI10.1023/A:1017572832381
- Tang, G., 10.1007/s100110300002, Algebra Colloq. 10 (2003), 11-16. (2003) Zbl1034.20006MR1961501DOI10.1007/s100110300002
- Tang, G., 10.1007/s11425-007-0112-6, Sci. China, Ser. A. 50 (2007), 1280-1288. (2007) Zbl1143.20003MR2370615DOI10.1007/s11425-007-0112-6
- Wu, H., Tang, G. P., Structure of powers of the augmentation ideal and their consecutive quotients for the Burnside ring of a finite abelian group, Adv. Math. (China) 36 (2007), 627-630 Chinese. English summary. (2007) MR2380918
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.