On approximation of stability radius for an infinite-dimensional feedback control system
Kybernetika (2016)
- Volume: 52, Issue: 5, page 824-835
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topSano, Hideki. "On approximation of stability radius for an infinite-dimensional feedback control system." Kybernetika 52.5 (2016): 824-835. <http://eudml.org/doc/287547>.
@article{Sano2016,
abstract = {In this paper, we discuss the problem of approximating stability radius appearing in the design procedure of finite-dimensional stabilizing controllers for an infinite-dimensional dynamical system. The calculation of stability radius needs the value of $H_\infty $-norm of a transfer function whose realization is described by infinite-dimensional operators in a Hilbert space. From the computational point of view, we need to prepare a family of approximate finite-dimensional operators and then to calculate the $H_\infty $-norm of their transfer functions. However, it is not assured that they converge to the value of $H_\infty $-norm of the original transfer function. The purpose of this study is to justify the convergence. In a numerical example, we treat parabolic distributed parameter systems with distributed control and distributed/boundary observation.},
author = {Sano, Hideki},
journal = {Kybernetika},
keywords = {distributed parameter system; finite-dimensional controller; stability radius; transfer function; semigroup; distributed parameter system; finite-dimensional controller; stability radius; transfer function; semigroup},
language = {eng},
number = {5},
pages = {824-835},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On approximation of stability radius for an infinite-dimensional feedback control system},
url = {http://eudml.org/doc/287547},
volume = {52},
year = {2016},
}
TY - JOUR
AU - Sano, Hideki
TI - On approximation of stability radius for an infinite-dimensional feedback control system
JO - Kybernetika
PY - 2016
PB - Institute of Information Theory and Automation AS CR
VL - 52
IS - 5
SP - 824
EP - 835
AB - In this paper, we discuss the problem of approximating stability radius appearing in the design procedure of finite-dimensional stabilizing controllers for an infinite-dimensional dynamical system. The calculation of stability radius needs the value of $H_\infty $-norm of a transfer function whose realization is described by infinite-dimensional operators in a Hilbert space. From the computational point of view, we need to prepare a family of approximate finite-dimensional operators and then to calculate the $H_\infty $-norm of their transfer functions. However, it is not assured that they converge to the value of $H_\infty $-norm of the original transfer function. The purpose of this study is to justify the convergence. In a numerical example, we treat parabolic distributed parameter systems with distributed control and distributed/boundary observation.
LA - eng
KW - distributed parameter system; finite-dimensional controller; stability radius; transfer function; semigroup; distributed parameter system; finite-dimensional controller; stability radius; transfer function; semigroup
UR - http://eudml.org/doc/287547
ER -
References
top- Balas, M. J., 10.1016/0022-247x(88)90401-5, J. Math. Anal. Appl. 133 (1988), 283-296. Zbl0647.93036MR0954706DOI10.1016/0022-247x(88)90401-5
- Chicone, C., Latushkin, Y., 10.1090/surv/070, Mathematical Surveys and Monographs, vol. 70. American Mathematical Society, 1999. Zbl0970.47027MR1707332DOI10.1090/surv/070
- Curtain, R. F., 10.1137/0322018, SIAM J. Control Optim. 22 (1984), 255-276. Zbl0542.93056MR0732427DOI10.1137/0322018
- Glowinski, R., Lions, J.-L., He, J., Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach., In: Encyclopedia of Mathematics and Its Applications, vol. 117. Cambridge University Press, Cambridge 2008. Zbl1142.93002MR2404764
- Jai, A. El, Pritchard, A. J., Sensors and Controls in the Analysis of Distributed Systems. English Language Edition., Ellis Horwood Limited, Chichester 1988. MR0933327
- Guglielmi, N., Manetta, M., 10.1093/imanum/dru038, IMA J. Numerical Analysis 35 (2015), 1402-1425. Zbl1328.65168MR3407266DOI10.1093/imanum/dru038
- Lasiecka, I., Triggiani, R., 10.1017/cbo9780511574801, In: Encyclopedia of Mathematics and Its Applications, vol. 74. Cambridge University Press, Cambridge 2000. MR1745475DOI10.1017/cbo9780511574801
- Nambu, T., On stabilization of partial differential equations of parabolic type: boundary observation and feedback., Funkcialaj Ekvacioj, Serio Internacia 28 (1985), 267-298. Zbl0614.93049MR0852115
- Pazy, A., 10.1007/978-1-4612-5561-1, In: Applied Mathematical Sciences, vol. 44. Springer-Verlag, New York 1983. Zbl0516.47023MR0710486DOI10.1007/978-1-4612-5561-1
- Pritchard, A. J., Townley, S., 10.1016/0167-6911(88)90108-9, Systems Control Lett. 11 (1988), 33-37. Zbl0648.93047MR0949887DOI10.1016/0167-6911(88)90108-9
- Pritchard, A. J., Townley, S., 10.1016/0022-0396(89)90144-7, J. Differential Equations 77 (1989), 254-286. Zbl0674.34061MR0983295DOI10.1016/0022-0396(89)90144-7
- Sakawa, Y., 10.1137/0321040, SIAM J. Control Optim. 21 (1983), 667-676. Zbl0527.93050MR0710993DOI10.1137/0321040
- Sano, H., Kunimatsu, N., 10.1016/0893-9659(94)90065-5, Appl. Math. Lett. 7 (1994), 5, 17-22. MR1350603DOI10.1016/0893-9659(94)90065-5
- Sano, H., 10.1080/002071799220119, Int. J. Control 72 (1999), 16, 1466-1479. MR1723338DOI10.1080/002071799220119
- Sano, H., 10.1016/j.jmaa.2011.11.011, J. Math. Anal. Appl. 388 (2012), 1194-1204. Zbl1243.35166MR2869818DOI10.1016/j.jmaa.2011.11.011
- Schumacher, J. M., 10.1137/0321050, SIAM J. Control Optim. 21 (1983), 823-836. Zbl0524.93054MR0719515DOI10.1137/0321050
- Zhou, K., Doyle, J., Glover, K., Robust and Optimal Control. (In Japanese, translated from the English by K. Z. Liu and Z. H. Luo.), Corona, Tokyo 1997.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.