A canonical connection on sub-Riemannian contact manifolds

Michael Eastwood; Katharina Neusser

Archivum Mathematicum (2016)

  • Volume: 052, Issue: 5, page 277-289
  • ISSN: 0044-8753

Abstract

top
We construct a canonically defined affine connection in sub-Riemannian contact geometry. Our method mimics that of the Levi-Civita connection in Riemannian geometry. We compare it with the Tanaka-Webster connection in the three-dimensional case.

How to cite

top

Eastwood, Michael, and Neusser, Katharina. "A canonical connection on sub-Riemannian contact manifolds." Archivum Mathematicum 052.5 (2016): 277-289. <http://eudml.org/doc/287563>.

@article{Eastwood2016,
abstract = {We construct a canonically defined affine connection in sub-Riemannian contact geometry. Our method mimics that of the Levi-Civita connection in Riemannian geometry. We compare it with the Tanaka-Webster connection in the three-dimensional case.},
author = {Eastwood, Michael, Neusser, Katharina},
journal = {Archivum Mathematicum},
keywords = {contact manifold; sub-Riemannian geometry; partial connection; pseudo-Hermitian geometry},
language = {eng},
number = {5},
pages = {277-289},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {A canonical connection on sub-Riemannian contact manifolds},
url = {http://eudml.org/doc/287563},
volume = {052},
year = {2016},
}

TY - JOUR
AU - Eastwood, Michael
AU - Neusser, Katharina
TI - A canonical connection on sub-Riemannian contact manifolds
JO - Archivum Mathematicum
PY - 2016
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 052
IS - 5
SP - 277
EP - 289
AB - We construct a canonically defined affine connection in sub-Riemannian contact geometry. Our method mimics that of the Levi-Civita connection in Riemannian geometry. We compare it with the Tanaka-Webster connection in the three-dimensional case.
LA - eng
KW - contact manifold; sub-Riemannian geometry; partial connection; pseudo-Hermitian geometry
UR - http://eudml.org/doc/287563
ER -

References

top
  1. Agrachev, A.A., Barilari, D., Rizzi, L., Sub-Riemannian curvature in contact geometry, to appear in J. Geom. Anal. 
  2. Agrachev, A.A., Zelenko, I., 10.1023/A:1013904801414, J. Dynam. Control Systems 8 (1) (2002), 93–140. (2002) Zbl1019.53038MR1874705DOI10.1023/A:1013904801414
  3. Barilari, D., Rizzi, L., On Jacobi fields and canonical connection in sub-Riemannian geometry, arXiv:1506.01827. 
  4. Bryant, R.L., Eastwood, M.G., Gover, A.R., Neusser, K., Some differential complexes within and beyond parabolic geometry, arXiv:1112.2142. 
  5. Čap, A., Slovák, J., 10.1090/surv/154, Surveys and Monographs, vol. 154, Amer. Math. Soc., 2009. (2009) Zbl1183.53002MR2532439DOI10.1090/surv/154
  6. Eastwood, M.G., Gover, A.R., 10.1512/iumj.2011.60.4980, Indiana Univ. Math. J. 60 (2011), 1425–1486. (2011) MR2996997DOI10.1512/iumj.2011.60.4980
  7. Falbel, E., Gorodski, C., Veloso, J.M., Conformal sub-Riemannian geometry in dimension 3, Mat. Contemp. 9 (1995), 61–73. (1995) Zbl0859.53021MR1378673
  8. Morimoto, T., 10.1016/j.difgeo.2007.12.002, Differential Geom. Appl. 26 (2008), 75–78. (2008) Zbl1147.53027MR2393974DOI10.1016/j.difgeo.2007.12.002
  9. Rumin, M., Un complexe de formes différentielles sur les variétés de contact, Comptes Rendus Acad. Sci. Paris Math. 310 (1990), 401–404. (1990) Zbl0694.57010MR1046521
  10. Tanaka, N., A differential geometric study on strongly pseudo-convex manifolds, Lectures in Mathematics, Kyoto University, Kinokuniya, 1975. (1975) Zbl0331.53025MR0399517
  11. Webster, S.M., 10.4310/jdg/1214434345, J. Differential Geom. 13 (1978), 25–41. (1978) Zbl0379.53016MR0520599DOI10.4310/jdg/1214434345
  12. Zelenko, I., Li, C., 10.1016/j.difgeo.2009.07.002, Differential Geom. Appl. 27 (2009), 723–742. (2009) Zbl1177.53020MR2552681DOI10.1016/j.difgeo.2009.07.002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.