Medial quasigroups of prime square order

David Stanovský

Commentationes Mathematicae Universitatis Carolinae (2016)

  • Volume: 57, Issue: 4, page 585-590
  • ISSN: 0010-2628

Abstract

top
We prove that, for any prime , there are precisely medial quasigroups of order , up to isomorphism.

How to cite

top

Stanovský, David. "Medial quasigroups of prime square order." Commentationes Mathematicae Universitatis Carolinae 57.4 (2016): 585-590. <http://eudml.org/doc/287567>.

@article{Stanovský2016,
abstract = {We prove that, for any prime $p$, there are precisely $2p^4-p^3-p^2-3p-1$ medial quasigroups of order $p^2$, up to isomorphism.},
author = {Stanovský, David},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {medial quasigroup; quasigroup affine over abelian group; classification of quasigroups; enumeration of quasigroups},
language = {eng},
number = {4},
pages = {585-590},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Medial quasigroups of prime square order},
url = {http://eudml.org/doc/287567},
volume = {57},
year = {2016},
}

TY - JOUR
AU - Stanovský, David
TI - Medial quasigroups of prime square order
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 4
SP - 585
EP - 590
AB - We prove that, for any prime $p$, there are precisely $2p^4-p^3-p^2-3p-1$ medial quasigroups of order $p^2$, up to isomorphism.
LA - eng
KW - medial quasigroup; quasigroup affine over abelian group; classification of quasigroups; enumeration of quasigroups
UR - http://eudml.org/doc/287567
ER -

References

top
  1. Drápal A., 10.1007/s00025-009-0370-4, Result. Math. 54 (2009), no. 3–4, 253–272. Zbl1190.20049MR2534446DOI10.1007/s00025-009-0370-4
  2. Hou X., Finite modules over , J. Knot Theory Ramifications 21 (2012), no. 8, 1250079, 28 pp. MR2925432
  3. Hulpke A., Stanovský D., Vojtěchovský P., 10.1016/j.jpaa.2015.07.014, J. Pure Appl. Algebra 220 (2016), no. 2, 735–758. Zbl1326.57025MR3399387DOI10.1016/j.jpaa.2015.07.014
  4. Kirnasovsky O.U., Linear isotopes of small order groups, Quasigroups Related Systems 2 (1995), no. 1, 51–82. Zbl0951.20508MR1485747
  5. Macdonald I.G., 10.1017/S0004972700006882, Bull. Austral. Math. Soc. 23 (1981), no. 1, 23–48. Zbl0445.20029MR0615131DOI10.1017/S0004972700006882
  6. Sim H.-S., Song H.-J., 10.7858/eamj.2014.019, East Asian Math. J. 30 (2014), no. 3, 293–302. Zbl1339.20065DOI10.7858/eamj.2014.019
  7. Sokhatsky F., Syvakivskij P., On linear isotopes of cyclic groups, Quasigroups Related Systems 1 (1994), no. 1, 66–76. Zbl0951.20510MR1327947
  8. Stanovský D., A guide to self-distributive quasigroups, or latin quandles, Quasigroups Related Systems 23 (2015), no. 1, 91–128. Zbl1328.20085MR3353113
  9. Stanovský D., Vojtěchovský P., Central and medial quasigroups of small order, Bul. Acad. Ştiinte Repub. Moldova Mat. 80 (2016), no. 1, 24–40. Zbl1349.20075MR3528005

NotesEmbed ?

top

You must be logged in to post comments.