The groups of automorphisms of the Witt W n and Virasoro Lie algebras

Vladimir V. Bavula

Czechoslovak Mathematical Journal (2016)

  • Volume: 66, Issue: 4, page 1129-1141
  • ISSN: 0011-4642

Abstract

top
Let L n = K [ x 1 ± 1 , ... , x n ± 1 ] be a Laurent polynomial algebra over a field K of characteristic zero, W n : = Der K ( L n ) the Lie algebra of K -derivations of the algebra L n , the so-called Witt Lie algebra, and let Vir be the Virasoro Lie algebra which is a 1 -dimensional central extension of the Witt Lie algebra. The Lie algebras W n and Vir are infinite dimensional Lie algebras. We prove that the following isomorphisms of the groups of Lie algebra automorphisms hold: Aut Lie ( Vir ) Aut Lie ( W 1 ) { ± 1 } K * , and give a short proof that Aut Lie ( W n ) Aut K - alg ( L n ) GL n ( ) K * n .

How to cite

top

Bavula, Vladimir V.. "The groups of automorphisms of the Witt $W_n$ and Virasoro Lie algebras." Czechoslovak Mathematical Journal 66.4 (2016): 1129-1141. <http://eudml.org/doc/287585>.

@article{Bavula2016,
abstract = {Let $L_n=K[x_1^\{\pm 1\} , \ldots , x_n^\{\pm 1\}]$ be a Laurent polynomial algebra over a field $K$ of characteristic zero, $W_n:= \{\rm Der\}_K(L_n)$ the Lie algebra of $K$-derivations of the algebra $L_n$, the so-called Witt Lie algebra, and let $\{\rm Vir\}$ be the Virasoro Lie algebra which is a $1$-dimensional central extension of the Witt Lie algebra. The Lie algebras $W_n$ and $\{\rm Vir\}$ are infinite dimensional Lie algebras. We prove that the following isomorphisms of the groups of Lie algebra automorphisms hold: $\{\rm Aut\}_\{\{\rm Lie\}\} (\{\rm Vir\}) \simeq \{\rm Aut\}_\{\{\rm Lie\}\} (W_1) \simeq \lbrace \pm 1\rbrace \ltimes K^*$, and give a short proof that $\{\rm Aut\}_\{\{\rm Lie\}\} (W_n) \simeq \{\rm Aut_\{K-\{\rm alg\}\}\} (L_n)\simeq \{\rm GL\}_n(\mathbb \{Z\}) \ltimes K^\{*n\}$.},
author = {Bavula, Vladimir V.},
journal = {Czechoslovak Mathematical Journal},
keywords = {group of automorphisms; monomorphism; Lie algebra; Witt algebra; Virasoro algebra; automorphism; locally nilpotent derivation; group of automorphisms; monomorphism; Lie algebra; Witt algebra; Virasoro algebra; automorphism; locally nilpotent derivation},
language = {eng},
number = {4},
pages = {1129-1141},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The groups of automorphisms of the Witt $W_n$ and Virasoro Lie algebras},
url = {http://eudml.org/doc/287585},
volume = {66},
year = {2016},
}

TY - JOUR
AU - Bavula, Vladimir V.
TI - The groups of automorphisms of the Witt $W_n$ and Virasoro Lie algebras
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 4
SP - 1129
EP - 1141
AB - Let $L_n=K[x_1^{\pm 1} , \ldots , x_n^{\pm 1}]$ be a Laurent polynomial algebra over a field $K$ of characteristic zero, $W_n:= {\rm Der}_K(L_n)$ the Lie algebra of $K$-derivations of the algebra $L_n$, the so-called Witt Lie algebra, and let ${\rm Vir}$ be the Virasoro Lie algebra which is a $1$-dimensional central extension of the Witt Lie algebra. The Lie algebras $W_n$ and ${\rm Vir}$ are infinite dimensional Lie algebras. We prove that the following isomorphisms of the groups of Lie algebra automorphisms hold: ${\rm Aut}_{{\rm Lie}} ({\rm Vir}) \simeq {\rm Aut}_{{\rm Lie}} (W_1) \simeq \lbrace \pm 1\rbrace \ltimes K^*$, and give a short proof that ${\rm Aut}_{{\rm Lie}} (W_n) \simeq {\rm Aut_{K-{\rm alg}}} (L_n)\simeq {\rm GL}_n(\mathbb {Z}) \ltimes K^{*n}$.
LA - eng
KW - group of automorphisms; monomorphism; Lie algebra; Witt algebra; Virasoro algebra; automorphism; locally nilpotent derivation; group of automorphisms; monomorphism; Lie algebra; Witt algebra; Virasoro algebra; automorphism; locally nilpotent derivation
UR - http://eudml.org/doc/287585
ER -

References

top
  1. Bavula, V. V., 10.1016/j.crma.2012.06.001, C. R., Math., Acad. Sci. Paris 350 (2012), 553-556. (2012) Zbl1264.17014MR2956141DOI10.1016/j.crma.2012.06.001
  2. Bavula, V. V., 10.1070/IM2013v077n06ABEH002670, Izv. Math. 77 (2013), 1067-1104. (2013) Zbl1286.17022MR3184106DOI10.1070/IM2013v077n06ABEH002670
  3. Bavula, V. V., 10.1016/j.jpaa.2013.10.004, J. Pure Appl. Algebra 218 (2014), 829-851. (2014) Zbl1281.17019MR3149637DOI10.1016/j.jpaa.2013.10.004
  4. Bavula, V. V., 10.1142/S0219498817500888, Algebra Appl. 16 (2017), 175-183 DOI: http://dx.doi.org/10.1142/S0219498817500888. (2017) MR3634093DOI10.1142/S0219498817500888
  5. Djoković, D. Ž., Zhao, K., 10.1090/S0002-9947-98-01786-3, Trans. Am. Math. Soc. 350 (1998), 643-664. (1998) Zbl0952.17015MR1390977DOI10.1090/S0002-9947-98-01786-3
  6. Grabowski, J., 10.1007/BF01406466, Invent. Math. 50 (1978), 13-33. (1978) Zbl0378.57010MR0516602DOI10.1007/BF01406466
  7. Grabowski, J., Poncin, N., 10.1112/S0010437X0300006X, Compos. Math. 140 (2004), 511-527. (2004) Zbl1044.17013MR2027202DOI10.1112/S0010437X0300006X
  8. Osborn, J. M., 10.4153/CJM-1997-006-5, Can. J. Math. 49 (1997), 119-132. (1997) Zbl0891.17018MR1437203DOI10.4153/CJM-1997-006-5
  9. Rudakov, A. N., 10.1007/BF01077325, Funct. Anal. Appl. 20 (1986), 72-73. (1986) Zbl0594.17015MR0831060DOI10.1007/BF01077325
  10. Shanks, M. E., Pursell, L. E., 10.1090/S0002-9939-1954-0064764-3, Proc. Am. Math. Soc. 5 (1954), 468-472. (1954) Zbl0055.42105MR0064764DOI10.1090/S0002-9939-1954-0064764-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.