The groups of automorphisms of the Witt and Virasoro Lie algebras
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 4, page 1129-1141
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBavula, Vladimir V.. "The groups of automorphisms of the Witt $W_n$ and Virasoro Lie algebras." Czechoslovak Mathematical Journal 66.4 (2016): 1129-1141. <http://eudml.org/doc/287585>.
@article{Bavula2016,
abstract = {Let $L_n=K[x_1^\{\pm 1\} , \ldots , x_n^\{\pm 1\}]$ be a Laurent polynomial algebra over a field $K$ of characteristic zero, $W_n:= \{\rm Der\}_K(L_n)$ the Lie algebra of $K$-derivations of the algebra $L_n$, the so-called Witt Lie algebra, and let $\{\rm Vir\}$ be the Virasoro Lie algebra which is a $1$-dimensional central extension of the Witt Lie algebra. The Lie algebras $W_n$ and $\{\rm Vir\}$ are infinite dimensional Lie algebras. We prove that the following isomorphisms of the groups of Lie algebra automorphisms hold: $\{\rm Aut\}_\{\{\rm Lie\}\} (\{\rm Vir\}) \simeq \{\rm Aut\}_\{\{\rm Lie\}\} (W_1) \simeq \lbrace \pm 1\rbrace \ltimes K^*$, and give a short proof that $\{\rm Aut\}_\{\{\rm Lie\}\} (W_n) \simeq \{\rm Aut_\{K-\{\rm alg\}\}\} (L_n)\simeq \{\rm GL\}_n(\mathbb \{Z\}) \ltimes K^\{*n\}$.},
author = {Bavula, Vladimir V.},
journal = {Czechoslovak Mathematical Journal},
keywords = {group of automorphisms; monomorphism; Lie algebra; Witt algebra; Virasoro algebra; automorphism; locally nilpotent derivation; group of automorphisms; monomorphism; Lie algebra; Witt algebra; Virasoro algebra; automorphism; locally nilpotent derivation},
language = {eng},
number = {4},
pages = {1129-1141},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The groups of automorphisms of the Witt $W_n$ and Virasoro Lie algebras},
url = {http://eudml.org/doc/287585},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Bavula, Vladimir V.
TI - The groups of automorphisms of the Witt $W_n$ and Virasoro Lie algebras
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 4
SP - 1129
EP - 1141
AB - Let $L_n=K[x_1^{\pm 1} , \ldots , x_n^{\pm 1}]$ be a Laurent polynomial algebra over a field $K$ of characteristic zero, $W_n:= {\rm Der}_K(L_n)$ the Lie algebra of $K$-derivations of the algebra $L_n$, the so-called Witt Lie algebra, and let ${\rm Vir}$ be the Virasoro Lie algebra which is a $1$-dimensional central extension of the Witt Lie algebra. The Lie algebras $W_n$ and ${\rm Vir}$ are infinite dimensional Lie algebras. We prove that the following isomorphisms of the groups of Lie algebra automorphisms hold: ${\rm Aut}_{{\rm Lie}} ({\rm Vir}) \simeq {\rm Aut}_{{\rm Lie}} (W_1) \simeq \lbrace \pm 1\rbrace \ltimes K^*$, and give a short proof that ${\rm Aut}_{{\rm Lie}} (W_n) \simeq {\rm Aut_{K-{\rm alg}}} (L_n)\simeq {\rm GL}_n(\mathbb {Z}) \ltimes K^{*n}$.
LA - eng
KW - group of automorphisms; monomorphism; Lie algebra; Witt algebra; Virasoro algebra; automorphism; locally nilpotent derivation; group of automorphisms; monomorphism; Lie algebra; Witt algebra; Virasoro algebra; automorphism; locally nilpotent derivation
UR - http://eudml.org/doc/287585
ER -
References
top- Bavula, V. V., 10.1016/j.crma.2012.06.001, C. R., Math., Acad. Sci. Paris 350 (2012), 553-556. (2012) Zbl1264.17014MR2956141DOI10.1016/j.crma.2012.06.001
- Bavula, V. V., 10.1070/IM2013v077n06ABEH002670, Izv. Math. 77 (2013), 1067-1104. (2013) Zbl1286.17022MR3184106DOI10.1070/IM2013v077n06ABEH002670
- Bavula, V. V., 10.1016/j.jpaa.2013.10.004, J. Pure Appl. Algebra 218 (2014), 829-851. (2014) Zbl1281.17019MR3149637DOI10.1016/j.jpaa.2013.10.004
- Bavula, V. V., 10.1142/S0219498817500888, Algebra Appl. 16 (2017), 175-183 DOI: http://dx.doi.org/10.1142/S0219498817500888. (2017) MR3634093DOI10.1142/S0219498817500888
- Djoković, D. Ž., Zhao, K., 10.1090/S0002-9947-98-01786-3, Trans. Am. Math. Soc. 350 (1998), 643-664. (1998) Zbl0952.17015MR1390977DOI10.1090/S0002-9947-98-01786-3
- Grabowski, J., 10.1007/BF01406466, Invent. Math. 50 (1978), 13-33. (1978) Zbl0378.57010MR0516602DOI10.1007/BF01406466
- Grabowski, J., Poncin, N., 10.1112/S0010437X0300006X, Compos. Math. 140 (2004), 511-527. (2004) Zbl1044.17013MR2027202DOI10.1112/S0010437X0300006X
- Osborn, J. M., 10.4153/CJM-1997-006-5, Can. J. Math. 49 (1997), 119-132. (1997) Zbl0891.17018MR1437203DOI10.4153/CJM-1997-006-5
- Rudakov, A. N., 10.1007/BF01077325, Funct. Anal. Appl. 20 (1986), 72-73. (1986) Zbl0594.17015MR0831060DOI10.1007/BF01077325
- Shanks, M. E., Pursell, L. E., 10.1090/S0002-9939-1954-0064764-3, Proc. Am. Math. Soc. 5 (1954), 468-472. (1954) Zbl0055.42105MR0064764DOI10.1090/S0002-9939-1954-0064764-3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.