Numerical methods for linear minimax estimation

Norbert Gaffke; Berthold Heiligers

Discussiones Mathematicae Probability and Statistics (2000)

  • Volume: 20, Issue: 1, page 51-62
  • ISSN: 1509-9423

Abstract

top
We discuss two numerical approaches to linear minimax estimation in linear models under ellipsoidal parameter restrictions. The first attacks the problem directly, by minimizing the maximum risk among the estimators. The second method is based on the duality between minimax and Bayes estimation, and aims at finding a least favorable prior distribution.

How to cite

top

Norbert Gaffke, and Berthold Heiligers. "Numerical methods for linear minimax estimation." Discussiones Mathematicae Probability and Statistics 20.1 (2000): 51-62. <http://eudml.org/doc/287612>.

@article{NorbertGaffke2000,
abstract = {We discuss two numerical approaches to linear minimax estimation in linear models under ellipsoidal parameter restrictions. The first attacks the problem directly, by minimizing the maximum risk among the estimators. The second method is based on the duality between minimax and Bayes estimation, and aims at finding a least favorable prior distribution.},
author = {Norbert Gaffke, Berthold Heiligers},
journal = {Discussiones Mathematicae Probability and Statistics},
keywords = {Bayes estimation; duality; linear model; L-optimality; mean squared error; minimax estimation; non-smooth optimization; parameter restrictions; p-mean; quasi Newton method; parametric restrictions},
language = {eng},
number = {1},
pages = {51-62},
title = {Numerical methods for linear minimax estimation},
url = {http://eudml.org/doc/287612},
volume = {20},
year = {2000},
}

TY - JOUR
AU - Norbert Gaffke
AU - Berthold Heiligers
TI - Numerical methods for linear minimax estimation
JO - Discussiones Mathematicae Probability and Statistics
PY - 2000
VL - 20
IS - 1
SP - 51
EP - 62
AB - We discuss two numerical approaches to linear minimax estimation in linear models under ellipsoidal parameter restrictions. The first attacks the problem directly, by minimizing the maximum risk among the estimators. The second method is based on the duality between minimax and Bayes estimation, and aims at finding a least favorable prior distribution.
LA - eng
KW - Bayes estimation; duality; linear model; L-optimality; mean squared error; minimax estimation; non-smooth optimization; parameter restrictions; p-mean; quasi Newton method; parametric restrictions
UR - http://eudml.org/doc/287612
ER -

References

top
  1. [1] W. Achtziger, Nichtglatte Optimierung: Ein spezielles Problem bei der Durchführung von Versuchen, Diplomathesis, Universität Bayreuth, Germany 1989 (in German). 
  2. [2] A. Dietz, Implementierung eines Algorithmus zur Berechnung linearer Minimaxschätzer, Diplomathesis, Universität Augsburg, Germany 1993 (in German). 
  3. [3] R. Fletcher, Practical Methods of Optimization, (2nd ed.) Wiley, New York 1987. Zbl0905.65002
  4. [4] N. Gaffke and B. Heiligers, Bayes, admissible and minimax linear estimators in linear models with restricted parameter space, Statistics 20 (1989), 487-508. Zbl0686.62019
  5. [5] N. Gaffke and B. Heiligers, Second order methods for solving extremum problems from optimal linear regression design, Optimization 36 (1996), 41-57. 
  6. [6] N. Gaffke and R. Mathar, Linear minimax estimation and related Bayes L-optimal design, Methods of Operations Research 60 (1990), 617-628. Zbl0692.62063
  7. [7] N. Gaffke and R. Mathar, On a class of algorithms from experimental design theory, Optimization 24 (1992), 91-126. Zbl0817.90075
  8. [8] B. Heiligers, Affin-lineare Minimaxschätzer im linearen statistischen Modell bei eingeschränktem Parameterbereich, Diplomathesis, RWTH Aachen, Germany 1985 (in German). 
  9. [9] B. Heiligers, Linear Bayes and minimax estimators in linear models with partially restricted parameter space, J. Statist. Plann. Inference 36 (1993), 175-183. Zbl0780.62027
  10. [10] J.E. Higgins and E. Pollack, Minimizing pseudoconvex functions on convex compact sets, J. Optim. Theory and Appl. 65 (1990), 1-27. Zbl0672.90093
  11. [11] K. Hoffmann, Characterization of minimax linear estimators in linear regression, Math. Operationsforsch. u. Statist., Ser. Statist. 8 (1979), 425-438. 
  12. [12] J. Kuks, Minimax estimation of regression coefficients, Izv. Akad. Nauk Eston SSR 21 (1972), 73-78 (in Russian). Zbl0227.62020
  13. [13] J. Lauterbach, Zur Berechnung approximativer Minimax-Schätzer im linearen Regressionsmodell, Dissertationthesis, Universität Hannover, Germany 1989 (in German). 
  14. [14] J. Lauterbach and P. Stahlecker, Approximate minimax estimation in linear regression: A simulation study, Comm. Statist., Simulation 17 (1988), 209-227. Zbl0695.62157
  15. [15] J. Pilz, Minimax linear regression estimation with symmetric parameter restrictions, J. Statist. Plann. Inference 13 (1986), 297-318. Zbl0602.62054
  16. [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Cambridge University Press, Cambridge 1988. Zbl0661.65001
  17. [17] P. Stahlecker and J. Lauterbach, Approximate linear minimax estimation in regression analysis with ellipsoidal constraints, Comm. Statist., Theory Meth. 18 (1989), 2755-2784. Zbl0696.62273

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.