Solution of Belousov's problem

Maks A. Akivis; Vladislav V. Goldberg

Discussiones Mathematicae - General Algebra and Applications (2001)

  • Volume: 21, Issue: 1, page 93-103
  • ISSN: 1509-9415

Abstract

top
The authors prove that a local n-quasigroup defined by the equation x n + 1 = F ( x , . . . , x ) = ( f ( x ) + . . . + f ( x ) ) / ( x + . . . + x ) , where f i ( x i ) , i,j = 1,...,n, are arbitrary functions, is irreducible if and only if any two functions f i ( x i ) and f j ( x j ) , i ≠ j, are not both linear homogeneous, or these functions are linear homogeneous but f i ( x i ) / x i f j ( x j ) / x j . This gives a solution of Belousov’s problem to construct examples of irreducible n-quasigroups for any n ≥ 3.

How to cite

top

Maks A. Akivis, and Vladislav V. Goldberg. "Solution of Belousov's problem." Discussiones Mathematicae - General Algebra and Applications 21.1 (2001): 93-103. <http://eudml.org/doc/287630>.

@article{MaksA2001,
abstract = {The authors prove that a local n-quasigroup defined by the equation $x_\{n+1\} = F(x₁,...,xₙ) = (f₁(x₁) + ... + fₙ(xₙ))/(x₁ + ... + xₙ)$, where $f_\{i\}(x_\{i\})$, i,j = 1,...,n, are arbitrary functions, is irreducible if and only if any two functions $f_\{i\}(x_\{i\})$ and $f_\{j\}(x_\{j\})$, i ≠ j, are not both linear homogeneous, or these functions are linear homogeneous but $f_\{i\}(x_\{i\})/x_\{i\} ≠ f_\{j\}(x_\{j\})/x_\{j\}$. This gives a solution of Belousov’s problem to construct examples of irreducible n-quasigroups for any n ≥ 3.},
author = {Maks A. Akivis, Vladislav V. Goldberg},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {n-ary quasigroup; reducible; irreducible; differentiable quasigroups; reducible quasigroups; irreducible quasigroups; webs; -ary quasigroups},
language = {eng},
number = {1},
pages = {93-103},
title = {Solution of Belousov's problem},
url = {http://eudml.org/doc/287630},
volume = {21},
year = {2001},
}

TY - JOUR
AU - Maks A. Akivis
AU - Vladislav V. Goldberg
TI - Solution of Belousov's problem
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2001
VL - 21
IS - 1
SP - 93
EP - 103
AB - The authors prove that a local n-quasigroup defined by the equation $x_{n+1} = F(x₁,...,xₙ) = (f₁(x₁) + ... + fₙ(xₙ))/(x₁ + ... + xₙ)$, where $f_{i}(x_{i})$, i,j = 1,...,n, are arbitrary functions, is irreducible if and only if any two functions $f_{i}(x_{i})$ and $f_{j}(x_{j})$, i ≠ j, are not both linear homogeneous, or these functions are linear homogeneous but $f_{i}(x_{i})/x_{i} ≠ f_{j}(x_{j})/x_{j}$. This gives a solution of Belousov’s problem to construct examples of irreducible n-quasigroups for any n ≥ 3.
LA - eng
KW - n-ary quasigroup; reducible; irreducible; differentiable quasigroups; reducible quasigroups; irreducible quasigroups; webs; -ary quasigroups
UR - http://eudml.org/doc/287630
ER -

References

top
  1. [1] V.D. Belousov, n-ary quasigroups (Russian), Izdat. 'Shtiintsa', Kishinev 1972, 227 pp. 
  2. [2] V.D. Belousov, and M. D. Sandik, n-ary quasigroups and loops (Russian), Sibirsk. Mat. Zh. 7 (1966), no. 1, 31-54. (English transl. in: Siberian Math. J. 7 (1966), no. 1, 24-42). Zbl0199.05201
  3. [3] W. Blaschke, Einführung in die Geometrie der Waben, Birkhäuser-Verlag, Basel-Stuttgart 1955, 108 pp. (Russian transl. GITTL, Moscow 1959), 144 pp. Zbl0068.36501
  4. [4] V.V. Borisenko, Irreducible n-quasigroups on finite sets of composite order (Russian), Mat. Issled., Vyp. 51 (1979), 38-42. 
  5. [5] B.R. Frenkin, Reducibility and uniform reducibility in certain classes of n-groupoids II (Russian), Mat. Issled., Vyp. 7 (1972), no. 1 (23), 150-162. Zbl0247.20080
  6. [6] M.M. Glukhov, Varieties of (i, j)-reducible n-quasigroups (Russian), Mat. Issled., Vyp. 39 (1976), 67-72. 
  7. [7] M.M. Glukhov, On the question of reducibility of principal parastrophies of n-quasigroups (Russian), Mat. Issled., Vyp. 113 (1990), 37-41. 
  8. [8] V.V. Goldberg, The invariant characterization of certain closure conditions in ternary quasigroups (Russian), Sibirsk. Mat. Zh. 16 (1975), no. 1, 29-43. (English transl. in: Siberian Math. J. 16 (1975), no. 1, 23-34). 
  9. [9] V.V. Goldberg, Reducible (n+1)-webs, group (n+1)-webs, and (2n+2)-hedral (n+1)-webs of multidimensional surfaces (Russian), Sibirsk. Mat. Zh. 17 (1976), no. 1, 44-57. (English transl. in: Siberian Math. J. 17 (1976), no. 1, 34-44). 
  10. [10] V.V. Goldberg, Theory of Multicodimensional (n+1)-Webs, Kluwer Academic Publishers, Dordrecht, 1988, xxii+466 pp. Zbl0668.53001
  11. [11] E. Goursat, Sur les équations du second ordre a n variables, analogues a l'équation de Monge-Ampere, Bull. Soc. Math. France 27 (1899), 1-34. Zbl30.0326.01
  12. [12] V.V. Ryzhkov, Conjugate nets on multidimensional surfaces (Russian), Trudy Moscow. Mat. Obshch. 7 (1958). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.