Solution of Belousov's problem
Maks A. Akivis; Vladislav V. Goldberg
Discussiones Mathematicae - General Algebra and Applications (2001)
- Volume: 21, Issue: 1, page 93-103
- ISSN: 1509-9415
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] V.D. Belousov, n-ary quasigroups (Russian), Izdat. 'Shtiintsa', Kishinev 1972, 227 pp.
- [2] V.D. Belousov, and M. D. Sandik, n-ary quasigroups and loops (Russian), Sibirsk. Mat. Zh. 7 (1966), no. 1, 31-54. (English transl. in: Siberian Math. J. 7 (1966), no. 1, 24-42). Zbl0199.05201
- [3] W. Blaschke, Einführung in die Geometrie der Waben, Birkhäuser-Verlag, Basel-Stuttgart 1955, 108 pp. (Russian transl. GITTL, Moscow 1959), 144 pp. Zbl0068.36501
- [4] V.V. Borisenko, Irreducible n-quasigroups on finite sets of composite order (Russian), Mat. Issled., Vyp. 51 (1979), 38-42.
- [5] B.R. Frenkin, Reducibility and uniform reducibility in certain classes of n-groupoids II (Russian), Mat. Issled., Vyp. 7 (1972), no. 1 (23), 150-162. Zbl0247.20080
- [6] M.M. Glukhov, Varieties of (i, j)-reducible n-quasigroups (Russian), Mat. Issled., Vyp. 39 (1976), 67-72.
- [7] M.M. Glukhov, On the question of reducibility of principal parastrophies of n-quasigroups (Russian), Mat. Issled., Vyp. 113 (1990), 37-41.
- [8] V.V. Goldberg, The invariant characterization of certain closure conditions in ternary quasigroups (Russian), Sibirsk. Mat. Zh. 16 (1975), no. 1, 29-43. (English transl. in: Siberian Math. J. 16 (1975), no. 1, 23-34).
- [9] V.V. Goldberg, Reducible (n+1)-webs, group (n+1)-webs, and (2n+2)-hedral (n+1)-webs of multidimensional surfaces (Russian), Sibirsk. Mat. Zh. 17 (1976), no. 1, 44-57. (English transl. in: Siberian Math. J. 17 (1976), no. 1, 34-44).
- [10] V.V. Goldberg, Theory of Multicodimensional (n+1)-Webs, Kluwer Academic Publishers, Dordrecht, 1988, xxii+466 pp. Zbl0668.53001
- [11] E. Goursat, Sur les équations du second ordre a n variables, analogues a l'équation de Monge-Ampere, Bull. Soc. Math. France 27 (1899), 1-34. Zbl30.0326.01
- [12] V.V. Ryzhkov, Conjugate nets on multidimensional surfaces (Russian), Trudy Moscow. Mat. Obshch. 7 (1958).