A factorization of elements in PSL(2, F), where F = Q, R

Jan Ambrosiewicz

Discussiones Mathematicae - General Algebra and Applications (2000)

  • Volume: 20, Issue: 2, page 159-167
  • ISSN: 1509-9415

Abstract

top
Let G be a group and Kₙ = {g ∈ G: o(g) = n}. It is prowed: (i) if F = ℝ, n ≥ 4, then PSL(2,F) = Kₙ²; (ii) if F = ℚ,ℝ, n = ∞, then PSL(2,F) = Kₙ²; (iii) if F = ℝ, then PSL(2,F) = K₃³; (iv) if F = ℚ,ℝ, then PSL(2,F) = K₂³ ∪ E, E ∉ K₂³, where E denotes the unit matrix; (v) if F = ℚ, then PSL(2,F) ≠ K₃³.

How to cite

top

Jan Ambrosiewicz. "A factorization of elements in PSL(2, F), where F = Q, R." Discussiones Mathematicae - General Algebra and Applications 20.2 (2000): 159-167. <http://eudml.org/doc/287631>.

@article{JanAmbrosiewicz2000,
abstract = {Let G be a group and Kₙ = \{g ∈ G: o(g) = n\}. It is prowed: (i) if F = ℝ, n ≥ 4, then PSL(2,F) = Kₙ²; (ii) if F = ℚ,ℝ, n = ∞, then PSL(2,F) = Kₙ²; (iii) if F = ℝ, then PSL(2,F) = K₃³; (iv) if F = ℚ,ℝ, then PSL(2,F) = K₂³ ∪ E, E ∉ K₂³, where E denotes the unit matrix; (v) if F = ℚ, then PSL(2,F) ≠ K₃³.},
author = {Jan Ambrosiewicz},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {factorization of linear groups; linear groups; matrix representations of groups; sets of elements of the same order in groups},
language = {eng},
number = {2},
pages = {159-167},
title = {A factorization of elements in PSL(2, F), where F = Q, R},
url = {http://eudml.org/doc/287631},
volume = {20},
year = {2000},
}

TY - JOUR
AU - Jan Ambrosiewicz
TI - A factorization of elements in PSL(2, F), where F = Q, R
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2000
VL - 20
IS - 2
SP - 159
EP - 167
AB - Let G be a group and Kₙ = {g ∈ G: o(g) = n}. It is prowed: (i) if F = ℝ, n ≥ 4, then PSL(2,F) = Kₙ²; (ii) if F = ℚ,ℝ, n = ∞, then PSL(2,F) = Kₙ²; (iii) if F = ℝ, then PSL(2,F) = K₃³; (iv) if F = ℚ,ℝ, then PSL(2,F) = K₂³ ∪ E, E ∉ K₂³, where E denotes the unit matrix; (v) if F = ℚ, then PSL(2,F) ≠ K₃³.
LA - eng
KW - factorization of linear groups; linear groups; matrix representations of groups; sets of elements of the same order in groups
UR - http://eudml.org/doc/287631
ER -

References

top
  1. [1] J. Ambrosiewicz, On the property W for the multiplicative group of the quaternions algebra, Studia Univ. Babes-Bolyai Math. 25 (1980), no. 2, 2-3. Zbl0521.20017
  2. [2] J. Ambrosiewicz, The property W² for the multiplicative group of the quaternions field, Studia Univ. Babes-Bolyai Math. 29 (1984), 63-67. 
  3. [3] J. Ambrosiewicz, On the square of sets of the group SL(3,F), PSL(3,F), Demonstratio Math. 18 (1985), 963-968. Zbl0606.20037
  4. [4] J. Ambrosiewicz, On square of sets of linear groups, Rend. Sem. Mat. Univ. Padova 75 (1986), 253-256. 
  5. [5] J. Ambrosiewicz, Powers of sets in linear group, Demonstratio Math. 23 (1990), 395-403. 
  6. [6] J. Ambrosiewicz, Square of set of elements of order two in orthogonal groups, Publ. Math. Debrecen 41 (1992), 189-198. Zbl0812.20026
  7. [7] J. Ambrosiewicz, If K is a real field then cn(PSL(2,K)) = 4, Demonstratio Math. 29 (1996), 783-785. Zbl0874.20030
  8. [8] E.W. Ellers, Bireflectionality in classical groups, Canad. J. Math. 29 (1977), 1157-1162. Zbl0371.15009
  9. [9] E.W. Ellers, R. Frank, and W. Nolte, Bireflectionality of the weak orthogonal and the weak sympletic groups, J. Algebra 88 (1984), 63-67. Zbl0533.20020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.