F-tests for generalized linear hypotheses in subnormal models
Joao Tiago Mexia; Gerberto Carvalho Dias
Discussiones Mathematicae Probability and Statistics (2001)
- Volume: 21, Issue: 1, page 49-62
- ISSN: 1509-9423
Access Full Article
topAbstract
topHow to cite
topJoao Tiago Mexia, and Gerberto Carvalho Dias. "F-tests for generalized linear hypotheses in subnormal models." Discussiones Mathematicae Probability and Statistics 21.1 (2001): 49-62. <http://eudml.org/doc/287649>.
@article{JoaoTiagoMexia2001,
abstract = {When the measurement errors may be assumed to be normal and independent from what is measured a subnormal model may be used. We define a linear and generalized linear hypotheses for these models, and derive F-tests for them. These tests are shown to be UMP for linear hypotheses as well as strictly unbiased and strongly consistent for these hypotheses. It is also shown that the F-tests are invariant for regular transformations, possess structural stability and are almost strongly consistent for generalized linear hypothesis. An application to a mixed model studied by Michalskyi and Zmyślony is shown.},
author = {Joao Tiago Mexia, Gerberto Carvalho Dias},
journal = {Discussiones Mathematicae Probability and Statistics},
keywords = {F-tests; subnormal models; mixed models; invariance; UMP tests; third type error; unbiased most powerful},
language = {eng},
number = {1},
pages = {49-62},
title = {F-tests for generalized linear hypotheses in subnormal models},
url = {http://eudml.org/doc/287649},
volume = {21},
year = {2001},
}
TY - JOUR
AU - Joao Tiago Mexia
AU - Gerberto Carvalho Dias
TI - F-tests for generalized linear hypotheses in subnormal models
JO - Discussiones Mathematicae Probability and Statistics
PY - 2001
VL - 21
IS - 1
SP - 49
EP - 62
AB - When the measurement errors may be assumed to be normal and independent from what is measured a subnormal model may be used. We define a linear and generalized linear hypotheses for these models, and derive F-tests for them. These tests are shown to be UMP for linear hypotheses as well as strictly unbiased and strongly consistent for these hypotheses. It is also shown that the F-tests are invariant for regular transformations, possess structural stability and are almost strongly consistent for generalized linear hypothesis. An application to a mixed model studied by Michalskyi and Zmyślony is shown.
LA - eng
KW - F-tests; subnormal models; mixed models; invariance; UMP tests; third type error; unbiased most powerful
UR - http://eudml.org/doc/287649
ER -
References
top- [1] D.B. A and J.B. B, Influence curve of an F-tests based on robustweights, American Statistical Association, Proceedings of the Statistical Computing Section, Alexandria 1992.
- [2] M. Fisz, Probability Theory and Mathematical Statistics, John Wiley & Sons, 3rd Edition New York 1963. Zbl0123.34504
- [3] E.L. L, Testing Statistical Hypothesis, John Wiley & Sons, New York 1959.
- [4] J.T. M, Controlled Heterocedasticity, Quotient Vector Spaces and F-tests for Hypothesis on Mean Vectors, Trabalhos de Investigaçao, FCT/UNL,Lisbon 1989.
- [5] A. M and R. Z, Testing Hypothesis for Linear Functions of Parameters in Mixed Linear Models, Tatra Mt. Math. Publ. 17 (1999), 103-110. Zbl0987.62012
- [6] J.N. Rao, B. S, and K. Yue, Generalized least squares F-tests in Regression Analysis with two-stage cluster samples, JASA. Vol. 88, No 424, (1993).
- [7] C.R. Rao, Advanced Methods on Biometric Research, John Wiley & Sons New York 1952. Zbl0047.38601
- [8] H. S, The Analysis of Variance, John Wiley & Sons. New York 1959.
- [9] G.A.F. S, The Linear Hypothesis: a General Theory, 2nd (ed), Charles Griffin & Co. London 1980.
- [10] M.J. S, Robust tests of inequality constraints and one-sided hypothesis in the linear model, Biometrika, Vol. 73, No 3, (1992).
- [11] J. T de O, Statistical Choice of Univariate Extreme Models, Statistical Distributions in Scientific Works, C. Tuillie et al. (eds), Reiche, Dordrécht, Vol. 6 (1980), 367-382.
- [12] J. T de O, Decision and Modelling in Extremes, Some Recent Advances in Statistics, J. Tiago de Oliveira & B. Epstein (eds), Academic Press, New York (1982), 101-110.
- [13] R.R. V, and J.T. M, Convergence of matrices and subspaces with statistical applications, Anais do Centro de Matemática e Aplicaçoes, I (2) (1995).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.