Semigroups defined by automaton extension mapping

Mirosław Osys

Discussiones Mathematicae - General Algebra and Applications (2005)

  • Volume: 25, Issue: 1, page 103-118
  • ISSN: 1509-9415

Abstract

top
We study semigroups generated by the restrictions of automaton extension (see, e.g., [3]) and give a characterization of automaton extensions that generate finite semigroups.

How to cite

top

Mirosław Osys. "Semigroups defined by automaton extension mapping." Discussiones Mathematicae - General Algebra and Applications 25.1 (2005): 103-118. <http://eudml.org/doc/287685>.

@article{MirosławOsys2005,
abstract = {We study semigroups generated by the restrictions of automaton extension (see, e.g., [3]) and give a characterization of automaton extensions that generate finite semigroups.},
author = {Mirosław Osys},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {automaton mapping; Mealy automaton; semigroup},
language = {eng},
number = {1},
pages = {103-118},
title = {Semigroups defined by automaton extension mapping},
url = {http://eudml.org/doc/287685},
volume = {25},
year = {2005},
}

TY - JOUR
AU - Mirosław Osys
TI - Semigroups defined by automaton extension mapping
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2005
VL - 25
IS - 1
SP - 103
EP - 118
AB - We study semigroups generated by the restrictions of automaton extension (see, e.g., [3]) and give a characterization of automaton extensions that generate finite semigroups.
LA - eng
KW - automaton mapping; Mealy automaton; semigroup
UR - http://eudml.org/doc/287685
ER -

References

top
  1. [1] K. Culik, II, Construction of the Automaton Mapping, (Russian), Apl. Mat. 10 (1965), 459-468. 
  2. [2] S. Eilenberg, Automata, Languages and Machines, Volume A, Academic Press, New York 1974. 
  3. [3] V.M. Glushkov, Abstract theory of automata, (Russian), Uspehi Mat. Nauk 16 no. 5 (101), (1961), 3-62. 
  4. [4] R.I. Grigorchuk, V.V. Nekrashevich and V.I. Sushchanskii, Automata,Dynamical Systems, and Groups, Proc. Steklov Inst. Math. 231 (2000), 128-203. Zbl1155.37311
  5. [5] B. Mikolajczak et al. (eds.), Algebraic and Structural Automata Theory, Annals of Discrete Mathematics, vol. 44, North-Holland Publ. Co., Amsterdam 1991. 
  6. [6] M. Osys, Automaton extensions of mappings on the set of words defined by finite Mealy automata, Algebra Discrete Math., to appear (preprint 2005). Zbl1092.68059
  7. [7] M. Osys, Automaton extensions of transformations of free monoid over finite alphabet (Polish), Zeszyty Nauk. Politech. Śląskiej, Seria Math.-Fiz., no. 91, (2004). 
  8. [8] G.N. Raney, Sequential functions, J. Assoc. Comput. Math. 5 (1958), 177-180. Zbl0088.01801
  9. [9] Y. Sheng, Regular languages, Handbook of Formal Languages, vol. 1, Springer-Verlag, Berlin 1997, 41-110. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.