An adaptive method of estimation and outlier detection in regression applicable for small to moderate sample sizes
Discussiones Mathematicae Probability and Statistics (2000)
- Volume: 20, Issue: 1, page 25-50
- ISSN: 1509-9423
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A.C. Atkinson, Two graphical displays for outlying and influential observations in regression, Biometrika 68 (1981), 13-20. Zbl0462.62049
- [2] A.C. Atkinson, Masking unmasked, Biometrika 73 (1986a), 533-41. Zbl0614.62092
- [3] A.C. Atkinson, Comment : Aspects of diagnostic regression analysis, Statistical Science 1 (1986b), 397-401.
- [4] A.C. Atkinson, Fast very robust methods for the detection of multiple outliers, Journal of the American Statistical Association 89 (1994), 1329-1339. Zbl0825.62429
- [5] V. Barnett and T. Lewis, Outliers in Statistical Data, 3rd ed., New York, Wiley, 1994. Zbl0801.62001
- [6] T. Bednarski and B.R. Clarke, Trimmed likelihood estimation of location and scale of the normal distribution, Australian Journal of Statistics 35 (1993), 141-153. Zbl0798.62043
- [7] M.D. Brown, J. Durbin and J.M. Evans, Techniques for testing the constancy of regression relationships over time, Journal of the Royal Statistical Society, Series B 37 (1975), 149-192. Zbl0321.62063
- [8] K.A. Brownlee, Statistical Theory and Methodology in Science and Engineering, 2nd ed., New York, Wiley, 1965. Zbl0136.39203
- [9] R.W. Butler, Nonparametric interval and point prediction using data trimmed by a Grubbs-type outlier rule, Annals of Statistics 10 (1982), 197-204. Zbl0487.62040
- [10] R.L. Chambers and C.R. Heathcote, On the estimation of slope and the identification of outliers in linear regression, Biometrika 68 (1981), 21-33. Zbl0463.62061
- [11] B.R. Clarke, Empirical evidence for adaptive confidence intervals and identification of outliers using methods of trimming, Australian Journal of Statistics 36 (1994), 45-58. Zbl0825.62418
- [12] R.D. Cook and S. Weisberg, Residuals and Influence in Regression, New York and London, Chapman and Hall 1982. Zbl0564.62054
- [13] P.L. Davies, The asymptotics of S-estimators in the Linear Regression Model, Annals of Statistics 18 (1990), 1651-1675. Zbl0719.62042
- [14] P.L. Davies and U. Gather, The identification of multiple outliers (with discussion), Journal of the American Statistical Association 88 (1993), 782-801. Zbl0797.62025
- [15] N.R. Draper and H. Smith, Applied Regression Analysis, New York, Wiley, 1966. Zbl0158.17101
- [16] W. Fung, Unmasking outliers and leverage points : A confirmation, Journal of the American Statistical Association 88 (1993), 515-519.
- [17] A.S. Hadi and J.S. Simonoff, Procedures for the identification of multiple outliers in linear models, Journal of the American Statistical Association 88 (1993), 1264-1272.
- [18] F.R. Hampel, E.M. Ronchetti, P.J. Rousseeuw and W.J. Stahel, Robust Statistics, the Approach Based on Influence Functions, New York, Wiley, 1986. Zbl0593.62027
- [19] D.M. Hawkins, D. Bradu and G.V. Kass, Location of several outliers in multiple-regression data using elemental sets, Technometrics 26 (1984), 197-208.
- [20] T.P. Hettmansperger and S.J. Sheather, A cautionary note on the method of least median squares, American Statistician 46 (1992), 79-83.
- [21] L.A. Jaeckel, Some flexible estimates of location, Annals of Mathematical Statistics 42 (1971), 1540-1552. Zbl0232.62008
- [22] F. Kianifard and W.H. Swallow, Using recursive residuals, calculated on adaptively-ordered observations, to identify outliers in linear regression, Biometrics 45 (1989), 571-585. Zbl0715.62144
- [23] F. Kianifard and W.H. Swallow, A Monte Carlo comparison of five procedures for identifying outliers in linear regression, Communications in Statistics, Part A-Theory and Methods 19 (1990), 1913-1938.
- [24] M.G Marasinghe, A multistage procedure for detecting several outliers in linear regression, Technometrics 27 (1985), 395-399.
- [25] P.J. Rousseeuw, Least median of squares regression, Journal of the American Statistical Association 79 (1984), 871-880. Zbl0547.62046
- [26] P.J. Rousseeuw and A.M. Leroy, Robust Regression and Outlier Detection, New York, Wiley, 1987. Zbl0711.62030
- [27] P.J. Rousseeuw and B.C. van Zomeren, Unmasking multivariate outliers and leverage points, Journal of the American Statistical Association 85 (1990), 633-651.
- [28] P.J. Rousseeuw and V.J. Yohai, Robust regression by means of S-estimators, Robust and Nonlinear Time Series Analysis, eds., J. Franke, W. Härdle and R.D. Martin, (Lecture Notes in Statistics), New York, Springer-Verlag, (1984), 256-272. Zbl0567.62027
- [29] D. Ruppert, Computing S-estimators for regression and multivariate location/dispersion, Journal of Computational and Graphical Statistics 1 (1992), 253-270.
- [30] T.P. Ryan, Comment on Hadi and Simonoff, Letters to the Editor, Journal of the American Statistical Association 90 (1995), 811.
- [31] G. Simpson, D. Ruppert and R.J. Carroll, On one-step GM estimates and stability of inferences in linear regression, Journal of the American Statistical Association 87 (1992), 439-450. Zbl0781.62104
- [32] W.H. Swallow and F. Kianifard, Using robust scale estimates in detecting multiple outliers in linear regression, Biometrics 52 (1996), 545-556. Zbl0875.62283
- [33] J.W Tukey and D.H. McLaughlin, Less vulnerable confidence and significance procedures for location based on a single sample: Trimming/Winsorization 1, Sankhya 25 (A) (1963), 331-352. Zbl0116.10904
- [34] W.N. Venables and B.D. Ripley, Modern Applied Statistics with S-Plus, New York, Springer-Verlag, 1994. Zbl0806.62002
- [35] D.L. Woodruff and D.M. Rocke, Computable robust estimation of multivariate location and shape in high dimension using compound estimators, Journal of the American Statistical Association 89 (1994), 888-896. Zbl0825.62485
- [36] V.J. Yohai, High breakdown point and high-efficiency robust estimates for regression, Annals of Statistics 15 (1987), 642-656. Zbl0624.62037
- [37] V.J. Yohai and R.H. Zamar, High breakdown-point estimates of regression by means of the minimization of an efficient scale, Journal of the American Statistical Association 83 (1988), 406-413. Zbl0648.62036