Autoregressive error-processes, cubic splines and tridiagonal matrices

Hilmar Drygas

Discussiones Mathematicae Probability and Statistics (2003)

  • Volume: 23, Issue: 2, page 147-165
  • ISSN: 1509-9423

Abstract

top
In the paper formulate for the inversion of some tridiagonal matrices are given. The results can be applied to the autoregressive processes.

How to cite

top

Hilmar Drygas. "Autoregressive error-processes, cubic splines and tridiagonal matrices." Discussiones Mathematicae Probability and Statistics 23.2 (2003): 147-165. <http://eudml.org/doc/287736>.

@article{HilmarDrygas2003,
abstract = {In the paper formulate for the inversion of some tridiagonal matrices are given. The results can be applied to the autoregressive processes.},
author = {Hilmar Drygas},
journal = {Discussiones Mathematicae Probability and Statistics},
keywords = {autoregressive processes; cubic splines interpolation; linear regression model; time series},
language = {eng},
number = {2},
pages = {147-165},
title = {Autoregressive error-processes, cubic splines and tridiagonal matrices},
url = {http://eudml.org/doc/287736},
volume = {23},
year = {2003},
}

TY - JOUR
AU - Hilmar Drygas
TI - Autoregressive error-processes, cubic splines and tridiagonal matrices
JO - Discussiones Mathematicae Probability and Statistics
PY - 2003
VL - 23
IS - 2
SP - 147
EP - 165
AB - In the paper formulate for the inversion of some tridiagonal matrices are given. The results can be applied to the autoregressive processes.
LA - eng
KW - autoregressive processes; cubic splines interpolation; linear regression model; time series
UR - http://eudml.org/doc/287736
ER -

References

top
  1. [1] H. Drygas, Sufficiency and completeness in the general Gauss-Markov model, Sankhya Ser A 45 (1984), 88-98. Zbl0535.62007
  2. [2] H. Drygas, The inverse of a tridiagonal matrix, Kasseler Mathematische Schriften, forthcoming (2003). Zbl1330.62336
  3. [3] F. Graybill, Matrices with Applications in Statistics, Wadsworth & Brooks/Cole, Advanced Books & Software, Pacific Grove, California 1963. 
  4. [4] R. Nabben, Two sided formels on the inverses of diagonally dominant tridiagonal matrices, Linear Algebra and its Applications 287 (1999), 289-305. Zbl0951.15005
  5. [5] C.R. Rao, Linear statistical inference and its applications. John Wiley & Sons Inc., New York-London-Sydney-Toronto 1973. Zbl0256.62002
  6. [6] P. Schönfeld, Methoden der Ökonometrie. Band I, Verlag Franz Vahlen GmbH, Berlin und Frankfurt am Main 1969. 
  7. [7] H.R. Schwarz, Numerische Mathematik. R.G. Teubner-Verlag, Stuttgart 1988. 
  8. [8] J.Stoer, Numerische Mathematik 1. 5. Auflage, Springer-Verlag, Berlin Heidelberg New York London Paris Tokyo Hong Kong 1989. 
  9. [9] W. Törnig, P. Spellucci, Numerische Mathematik für Ingenieure und Physiker. Band 2: Numerische Methoden der Analysis. Springer Verlag, Berlin Heidelberg New York London Paris Tokyo Hong Kong 1990. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.