Frobenius n-group algebras
Discussiones Mathematicae - General Algebra and Applications (2002)
- Volume: 22, Issue: 2, page 153-159
- ISSN: 1509-9415
Access Full Article
topAbstract
topHow to cite
topBiljana Zeković. "Frobenius n-group algebras." Discussiones Mathematicae - General Algebra and Applications 22.2 (2002): 153-159. <http://eudml.org/doc/287743>.
@article{BiljanaZeković2002,
abstract = {Frobenius algebras play an important role in the representation theory of finite groups. In the present work, we investigate the (quasi) Frobenius property of n-group algebras. Using the (quasi-) Frobenius property of ring, we can obtain some information about constructions of module category over this ring ([2], p. 66-67).},
author = {Biljana Zeković},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {n-ary group (n-group, polyadic group); (2,n)-ring; n-group-ring (algebra); (quasi-) Frobenius property; Artinianity property; regular bilinear from; descending chain condition for left (right) ideals; univeral enveloping (or covering) group; annhilator; -ary groups; annhilators; -group ring; quasi-Frobenius ring},
language = {eng},
number = {2},
pages = {153-159},
title = {Frobenius n-group algebras},
url = {http://eudml.org/doc/287743},
volume = {22},
year = {2002},
}
TY - JOUR
AU - Biljana Zeković
TI - Frobenius n-group algebras
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2002
VL - 22
IS - 2
SP - 153
EP - 159
AB - Frobenius algebras play an important role in the representation theory of finite groups. In the present work, we investigate the (quasi) Frobenius property of n-group algebras. Using the (quasi-) Frobenius property of ring, we can obtain some information about constructions of module category over this ring ([2], p. 66-67).
LA - eng
KW - n-ary group (n-group, polyadic group); (2,n)-ring; n-group-ring (algebra); (quasi-) Frobenius property; Artinianity property; regular bilinear from; descending chain condition for left (right) ideals; univeral enveloping (or covering) group; annhilator; -ary groups; annhilators; -group ring; quasi-Frobenius ring
UR - http://eudml.org/doc/287743
ER -
References
top- [1] V.A. Artamonov, Free n-groups (Russian), Mat. Zametki 8 (1970), 499-507.
- [2] L.A. Bokut, I.V. L'vov and V.K. Kharchenko, Nonkommutative Rings (Russian), vol. 18 of 'Itogi Nauki i Tekhniki', Izdat. VINITI, Moscov 1988.
- [3] A.G. Kurosh, General Algebra. - Lectures of the 1969-1970 Academic Year (Russian), Izdat, 'Nauka', Moscov 1974. Zbl0289.00004
- [4] E.L. Post, Polyadic groups, Trans. Amer. Math. Soc. 48 (1940), 208-350. Zbl66.0099.01
- [5] B. Zeković and V.A. Artamonov, n-Group rings and their radicals (Russian), Abelian Groups and Modules (Tomsk), 11 (1992), 3-7 (in Russian).
- [6] B. Zeković and V.A. Artamonov, Connections betweem some properties of n-group rings and group rings (Russian), Math. Montisnigri 11 (1999), 151-158. Zbl0972.16014
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.