Effect of choice of dissimilarity measure on classification efficiency with nearest neighbor method
Discussiones Mathematicae Probability and Statistics (2005)
- Volume: 25, Issue: 2, page 217-239
- ISSN: 1509-9423
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] C. Blake, E. Keogh and C. Merz, UCI Repository of Machine Learning Databases, http://www.ics.uci.edu/ mlearn/MLRepository.html, Univeristy of California, Irvine, Department of Information and Computer Sciences.
- [2] T. Cover and P. Hart, Nearest neighbor pattern classification, IEEE Trans. Information Theory 13 (1) (1967), 21-27. Zbl0154.44505
- [3] L. Devroye, L. Gy[o]rfi and G. Lugosi, Probabilistic Theory of Pattern Recognition, Springer New York 1996.
- [4] R. Gnanadeskian, Methods for Statistical Data Analysis of Multivariate Observations, John Wiley & Sons London Second, New York 1997.
- [5] R.A. Johnson and D.W. Wichern, Applied Multivariate Statistical Analysis, Prentice-Hall, New Jersey 1982. Zbl0499.62002
- [6] W.J. Krzanowski and F.H.C. Marriott, Multivariate Analysis, 1 Distributions, Ordination and Inference, Edward Arnold London 1994. Zbl0855.62036
- [7] W.J. Krzanowski and F.H.C. Marriott, Multivariate Analysis, 2 Classification, Covariance Structures and Repeated Measurements, London 1995. Zbl0949.62537
- [8] D.F. Morrison, Multivariate statistical analysis, PWN, Warszawa 1990.
- [9] R. Paredes and E. Vidal, A class-dependent weighted dissimilarity measure for nearest neighbor classification problems, Pattern Recognition Letters 21 (2000), 1027-1036. Zbl0967.68143
- [10] G.A.F. Seber, Multivariate Observations, John Wiley & Sons, New York 1984. Zbl0627.62052