On a characterization of symmetric balanced incomplete block designs
R.N. Mohan; Sanpei Kageyama; M.M. Nair
Discussiones Mathematicae Probability and Statistics (2004)
- Volume: 24, Issue: 1, page 41-58
- ISSN: 1509-9423
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] S. Chowla and H.J. Ryser, Combinatorial problems, Can. J. Math. 2 (1950), 93-99. Zbl0037.00603
- [2] R.J. Collins, Constructing BIB designs with computer, Ars Combin. 2 (1976), 285-303.
- [3] J.D. Fanning, A family of symmetric designs, Discrete Math. 146 (1995), 307-312. Zbl0838.05012
- [4] Q.M. Hussain, Symmetrical incomplete block designs with l = 2,k = 8 or 9, Bull. Calcutta Math. Soc. 37 (1945), 115-123. Zbl0060.31408
- [5] Y.J. Ionin, A technique for constructing symmetric designs, Designs, Codes and Cryptography 14 (1998), 147-158. Zbl0906.05006
- [6] Y.J. Ionin, Building symmetric designs with building sets, Designs, Codes and Cryptography 17 (1999), 159-175. Zbl0935.05008
- [7] S. Kageyama, Note on Takeuchi's table of difference sets generating balanced incomplete block designs, Int. Stat. Rev. 40, (1972), 275-276. Zbl0251.05017
- [8] S. Kageyama and R.N. Mohan, On m-resolvable BIB designs, Discrete Math. 45 (1983), 113-121. Zbl0512.05006
- [9] R. Mathon and A. Rosa, 2-(v, k, l) designs of small order, The CRC Handbook of Combinatorial Designs (ed. Colbourn, C. J. and Dinitz, J. H.). CRC Press, New York, (1996), 3-41. Zbl0845.05008
- [10] R.N. Mohan, A note on the construction of certain BIB designs, Discrete Math. 29 (1980), 209-211. Zbl0449.05005
- [11] R.N. Mohan, On an Mn-matrix, Informes de Matematica (IMPA-Preprint), Series B-104, Junho/96, Instituto de Matematica Pura E Aplicada, Rio de Janeiro, Brazil 1996.
- [12] R.N. Mohan, A new series of affine m-resolvable (d+1)-associate class PBIB designs, Indian J. Pure and Appl. Math. 30 (1999), 106-111.
- [13] D. Raghavarao, Constructions and Combinatorial Problems in Design of Experiments, Wiley, New York 1971.
- [14] S.S. Shrikhande, The impossibility of certain symmetrical balanced incomplete designs, Ann. Math. Statist. 21 (1950), 106-111. Zbl0040.36203
- [15] S.S. Shrikhande and N.K. Singh, On a method of constructing symmetrical balanced incomplete block designs, Sankhy¯a A24 (1962), 25-32. Zbl0105.33601
- [16] S.S. Shrikhande and D. Raghavarao, A method of construction of incomplete block designs, Sankhy¯a A25 (1963), 399-402. Zbl0126.35601
- [17] G. Szekers, A new class of symmetrical block designs, J. Combin. Theory 6 (1969), 219-221.
- [18] K. Takeuchi, A table of difference sets generating balanced incomplete block designs, Rev. Inst. Internat. Statist. 30 (1962), 361-366. Zbl0109.12204
- [19] N.H. Zaidi, Symmetrical balanced incomplete block designs with l = 2 and k = 9, Bull. Calcutta Math. Soc. 55 (1963), 163-167. Zbl0137.13204