Optimum chemical balance weighing designs with diagonal variance-covariance matrix of errors
Bronisław Ceranka; Małgorzata Graczyk
Discussiones Mathematicae Probability and Statistics (2004)
- Volume: 24, Issue: 2, page 215-232
- ISSN: 1509-9423
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] K.S. Banerjee, Weighing Designs for Chemistry, Medicine, Economics, Operations Research, Statistics. Marcel Dekker Inc., New York 1975. Zbl0334.62030
- [2] B. Ceranka and M. Graczyk, Optimum chemical balance weighing designs under the restriction on weighings, Discussiones Mathematicae - Probability and Statistics 21 (2001), 111-120. Zbl1016.05009
- [3] B. Ceranka and K. Katulska, Chemical balance weighing designs under the restriction on the number of objects placed on the pans, Tatra Mt. Math. Publ. 17 (1999), 141-148. Zbl0988.62047
- [4] B. Ceranka, K. Katulska and D. Mizera, The application of ternary balanced block designs to chemical balance weighing designs, Discussiones Mathematicae - Algebra and Stochastic Methods 18 (1998), 179-185. Zbl0922.62074
- [5] H. Hotelling, Some improvements in weighing and other experimental techniques, Ann. Math. Stat. 15 (1944), 297-305. Zbl0063.02076
- [6] C. Huang, Balanced bipartite weighing designs, Journal of Combinatorial Theory (A) 21 (1976), 20-34. Zbl0335.05017
- [7] K. Katulska, Optimum chemical balance weighing designs with non - homegeneity of the variances of errors, J. Japan Statist. Soc. 19 (1989), 95-101. Zbl0715.62147
- [8] J.W. Linnik, Metoda Najmniejszych Kwadratów i Teoria Opracowywania Obserwacji, PWN, Warszawa 1962.
- [9] D. Raghavarao, Constructions and Combinatorial Problems in Design ofExperiments, John Wiley Inc., New York 1971.
- [10] C.R. Rao, Linear Statistical Inference and its Applications, Second Edition, John Wiley and Sons, Inc., New York 1973. Zbl0256.62002
- [11] M.N. Swamy, Use of balanced bipartite weighing designs as chemical balance designs, Comm. Statist. Theory Methods 11 (1982), 769-785. Zbl0514.62086