On Mieshalkin-Rogozin theorem and some properties of the second kind beta distribution

Włodzimierz Krysicki

Discussiones Mathematicae Probability and Statistics (2000)

  • Volume: 20, Issue: 2, page 211-221
  • ISSN: 1509-9423

Abstract

top
The decomposition of the r.v. X with the beta second kind distribution in the form of finite (formula (9), Theorem 1) and infinity products (formula (17), Theorem 2 and form (21), Theorem 3) are presented. Next applying Mieshalkin - Rogozin theorem we receive the estimation of the difference of two c.d.f. F(x) and G(x) when sup|f(t) - g(t)| is known, improving the result of Gnedenko - Kolmogorov (formulae (23) and (24)).

How to cite

top

Włodzimierz Krysicki. "On Mieshalkin-Rogozin theorem and some properties of the second kind beta distribution." Discussiones Mathematicae Probability and Statistics 20.2 (2000): 211-221. <http://eudml.org/doc/287758>.

@article{WłodzimierzKrysicki2000,
abstract = {The decomposition of the r.v. X with the beta second kind distribution in the form of finite (formula (9), Theorem 1) and infinity products (formula (17), Theorem 2 and form (21), Theorem 3) are presented. Next applying Mieshalkin - Rogozin theorem we receive the estimation of the difference of two c.d.f. F(x) and G(x) when sup|f(t) - g(t)| is known, improving the result of Gnedenko - Kolmogorov (formulae (23) and (24)).},
author = {Włodzimierz Krysicki},
journal = {Discussiones Mathematicae Probability and Statistics},
keywords = {Mieshalkin - Rogozin theorem; result of Kolmogorov; Knar formula; Mieshalkin-Rogozin theorem},
language = {eng},
number = {2},
pages = {211-221},
title = {On Mieshalkin-Rogozin theorem and some properties of the second kind beta distribution},
url = {http://eudml.org/doc/287758},
volume = {20},
year = {2000},
}

TY - JOUR
AU - Włodzimierz Krysicki
TI - On Mieshalkin-Rogozin theorem and some properties of the second kind beta distribution
JO - Discussiones Mathematicae Probability and Statistics
PY - 2000
VL - 20
IS - 2
SP - 211
EP - 221
AB - The decomposition of the r.v. X with the beta second kind distribution in the form of finite (formula (9), Theorem 1) and infinity products (formula (17), Theorem 2 and form (21), Theorem 3) are presented. Next applying Mieshalkin - Rogozin theorem we receive the estimation of the difference of two c.d.f. F(x) and G(x) when sup|f(t) - g(t)| is known, improving the result of Gnedenko - Kolmogorov (formulae (23) and (24)).
LA - eng
KW - Mieshalkin - Rogozin theorem; result of Kolmogorov; Knar formula; Mieshalkin-Rogozin theorem
UR - http://eudml.org/doc/287758
ER -

References

top
  1. [1] F.J. Dyson, Fourier transforms of distributions functions, Canad J. Math. 5 (4) (1953), 554-558. Zbl0051.08401
  2. [2] B.W. Gnedenko and A.N. Kolmogorov, Rozkłady graniczne sum zmiennych losowych niezależnych, PWN, Warszawa 1957 (in polish). 
  3. [3] J.S. Gradztein and I.M. Ryzhik, Tables of Integrals, Sums, Series and Products, Moskwa 1962. 
  4. [4] E.J. Gumbel, The Distribution of the Range, Biom. 36 (1962), 142. 
  5. [5] N.L. Johnson, S. Kotz and N.B. Balakrishnan, Continuous Univariate Distributions, Sec. Edit. J. Wiley 1 (1995). 
  6. [6] M. Kałuszka and W. Krysicki, On decompositions of some random variables, Metrika 46 (2), 159-175. Zbl0919.62010
  7. [7] M.G. Kendall and A. Stuart, The Advanced Theory of Statistics, Griffin Vol. 1, London. Zbl0416.62001
  8. [8] W. Krysicki, et al, Probability Theory and Statistic in Problems, Warsaw PWN, Ed V, in polish 1998. 
  9. [9] M. Loeve, Probability Theory, Springer Verlag, New York, 1 (1977). 
  10. [10] I. Lilu and D. Richards, Random discriminants, Ann. Statist. 21 (1993), 1982-2001. Zbl0791.62059
  11. [11] E. Lukacs and R.G. Laha, Applications of characteristic functions, Griffin 1964. Zbl0117.36402
  12. [12] E. Lukacs, Characteristic functions, Griffin, Sec. Ed. 
  13. [13] J. Marcinkiewicz and A. Zygmund, Quelques Theoremes sur les fonctions independantes, Studia Mathematica 7 (1938). Zbl0018.07504
  14. [14] D. Mieshalkin and B.A. Rogozin, An estimation of the distance betweenc.d.f.'s based on the knowledge of the absolute value of their corresponding characteristic functions and its application to the central limit theorem, The limit theorems of Probability Theory, Uzbek. Ac. Sci., Taskent 1963 (in Russian). 
  15. [15] A. Plucińska, On general form of the probability density function and itsapplication to the investigation of the distribution of rheostat resistance, Zastosowania Matematyki 9 (1966), 9-19. 
  16. [16] H. Podolski, Distribution of product and ratio of powers od independent Random Variables with the second Kind Beta Distribution, ScientificBulletin of Technical University, Łódź 1975. Zbl0366.62015
  17. [17] B.A. Rogozin, Some problems of the limit theorems, "Theory of Probability and its Application" Vol III (1958), (in Russian), 186-195. 
  18. [18] R.K. Saksena and A.M. Mathai, Distribution of Random Variables, J. Roy. Statist. Soc. B. 29 (1967), 513-525. 
  19. [19] E. Titchmarsh, The Theory of Functions, 2 ed., Oxford Univ. Press 1939. Zbl0022.14602
  20. [20] B.M. Zolotarev, The Mellin-Stieltjes Transformation in Probability Theory, Theory Prob. Appl. 2, 433-460. 
  21. [21] Tables of integral transforms, Vol. I, Mc Graw Hill, New York 1954. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.