Shoaling of nonlinear steady waves: maximum height and angle of breaking
Franco, Sebastião Romero; Farina, Leandro
- Application of Mathematics 2015, Publisher: Institute of Mathematics CAS(Prague), page 45-62
Access Full Article
topAbstract
topHow to cite
topFranco, Sebastião Romero, and Farina, Leandro. "Shoaling of nonlinear steady waves: maximum height and angle of breaking." Application of Mathematics 2015. Prague: Institute of Mathematics CAS, 2015. 45-62. <http://eudml.org/doc/287770>.
@inProceedings{Franco2015,
abstract = {A Fourier approximation method is used for modeling and simulation of fully nonlinear steady waves. The set of resulting nonlinear equations are solved by Newton's method. The shoaling of waves is simulated based on comparisons with experimental data. The wave heights and the angles of breaking are analysed until the limit of inadequacy of the numerical method. The results appear quite close to those criteria predicted by the theory of completely nonlinear surface waves and contribute to provide information on the study of the relationship between computational modeling and the theory of steady waves.},
author = {Franco, Sebastião Romero, Farina, Leandro},
booktitle = {Application of Mathematics 2015},
keywords = {nonlinear water waves; steady waves; wave shoaling; angle of wave breaking; maximum wave height; spectral method},
location = {Prague},
pages = {45-62},
publisher = {Institute of Mathematics CAS},
title = {Shoaling of nonlinear steady waves: maximum height and angle of breaking},
url = {http://eudml.org/doc/287770},
year = {2015},
}
TY - CLSWK
AU - Franco, Sebastião Romero
AU - Farina, Leandro
TI - Shoaling of nonlinear steady waves: maximum height and angle of breaking
T2 - Application of Mathematics 2015
PY - 2015
CY - Prague
PB - Institute of Mathematics CAS
SP - 45
EP - 62
AB - A Fourier approximation method is used for modeling and simulation of fully nonlinear steady waves. The set of resulting nonlinear equations are solved by Newton's method. The shoaling of waves is simulated based on comparisons with experimental data. The wave heights and the angles of breaking are analysed until the limit of inadequacy of the numerical method. The results appear quite close to those criteria predicted by the theory of completely nonlinear surface waves and contribute to provide information on the study of the relationship between computational modeling and the theory of steady waves.
KW - nonlinear water waves; steady waves; wave shoaling; angle of wave breaking; maximum wave height; spectral method
UR - http://eudml.org/doc/287770
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.