Relative Gorenstein injective covers with respect to a semidualizing module

Elham Tavasoli; Maryam Salimi

Czechoslovak Mathematical Journal (2017)

  • Volume: 67, Issue: 1, page 87-95
  • ISSN: 0011-4642

Abstract

top
Let R be a commutative Noetherian ring and let C be a semidualizing R -module. We prove a result about the covering properties of the class of relative Gorenstein injective modules with respect to C which is a generalization of Theorem 1 by Enochs and Iacob (2015). Specifically, we prove that if for every G C -injective module G , the character module G + is G C -flat, then the class 𝒢ℐ C ( R ) 𝒜 C ( R ) is closed under direct sums and direct limits. Also, it is proved that under the above hypotheses the class 𝒢ℐ C ( R ) 𝒜 C ( R ) is covering.

How to cite

top

Tavasoli, Elham, and Salimi, Maryam. "Relative Gorenstein injective covers with respect to a semidualizing module." Czechoslovak Mathematical Journal 67.1 (2017): 87-95. <http://eudml.org/doc/287865>.

@article{Tavasoli2017,
abstract = {Let $R$ be a commutative Noetherian ring and let $C$ be a semidualizing $R$-module. We prove a result about the covering properties of the class of relative Gorenstein injective modules with respect to $C$ which is a generalization of Theorem 1 by Enochs and Iacob (2015). Specifically, we prove that if for every $G_\{C\}$-injective module $G$, the character module $G^\{+\}$ is $G_\{C\}$-flat, then the class $\mathcal \{GI\}_\{C\}(R)\cap \mathcal \{A\}_\{C\}(R)$ is closed under direct sums and direct limits. Also, it is proved that under the above hypotheses the class $\mathcal \{GI\}_\{C\}(R)\cap \mathcal \{A\}_\{C\}(R)$ is covering.},
author = {Tavasoli, Elham, Salimi, Maryam},
journal = {Czechoslovak Mathematical Journal},
keywords = {semidualizing module; $G_\{C\}$-flat module; $G _\{C\}$-injective module; cover; envelope},
language = {eng},
number = {1},
pages = {87-95},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Relative Gorenstein injective covers with respect to a semidualizing module},
url = {http://eudml.org/doc/287865},
volume = {67},
year = {2017},
}

TY - JOUR
AU - Tavasoli, Elham
AU - Salimi, Maryam
TI - Relative Gorenstein injective covers with respect to a semidualizing module
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 1
SP - 87
EP - 95
AB - Let $R$ be a commutative Noetherian ring and let $C$ be a semidualizing $R$-module. We prove a result about the covering properties of the class of relative Gorenstein injective modules with respect to $C$ which is a generalization of Theorem 1 by Enochs and Iacob (2015). Specifically, we prove that if for every $G_{C}$-injective module $G$, the character module $G^{+}$ is $G_{C}$-flat, then the class $\mathcal {GI}_{C}(R)\cap \mathcal {A}_{C}(R)$ is closed under direct sums and direct limits. Also, it is proved that under the above hypotheses the class $\mathcal {GI}_{C}(R)\cap \mathcal {A}_{C}(R)$ is covering.
LA - eng
KW - semidualizing module; $G_{C}$-flat module; $G _{C}$-injective module; cover; envelope
UR - http://eudml.org/doc/287865
ER -

References

top
  1. Auslander, M., Bridger, M., 10.1090/memo/0094, Memoirs of the American Mathematical Society 94 American Mathematical Society, Providence (1969). (1969) Zbl0204.36402MR0269685DOI10.1090/memo/0094
  2. Avramov, L. L., Foxby, H. B., 10.1112/S0024611597000348, Proc. Lond. Math. Soc., III. Ser. 75 (1997), 241-270. (1997) Zbl0901.13011MR1455856DOI10.1112/S0024611597000348
  3. Christensen, L. W., 10.1090/S0002-9947-01-02627-7, Trans. Am. Math. Soc. 353 (2001), 1839-1883. (2001) Zbl0969.13006MR1813596DOI10.1090/S0002-9947-01-02627-7
  4. Enochs, E. E., Holm, H., 10.1007/s11856-009-0113-y, Isr. J. Math. 174 253-268 (2009). (2009) Zbl1184.13029MR2581218DOI10.1007/s11856-009-0113-y
  5. Enochs, E. E., Iacob, A., 10.1090/S0002-9939-2014-12232-5, Proc. Am. Math. Soc. 143 (2015), 5-12. (2015) Zbl1307.18013MR3272726DOI10.1090/S0002-9939-2014-12232-5
  6. Enochs, E. E., Jenda, O. M. G., 10.1515/9783110215212, De Gruyter Expositions in Mathematics 30 Walter de Gruyter, Berlin (2000). (2000) Zbl1238.13001MR2857612DOI10.1515/9783110215212
  7. Enochs, E. E., Jenda, O. M. G., López-Ramos, J. A., 10.7146/math.scand.a-14429, Math. Scand. 94 (2004), 46-62. (2004) Zbl1061.16003MR2032335DOI10.7146/math.scand.a-14429
  8. Enochs, E. E., López-Ramos, J. A., Kaplansky classes, Rend. Semin. Math. Univ. Padova 107 (2002), 67-79. (2002) Zbl1099.13019MR1926201
  9. Foxby, H. B., 10.7146/math.scand.a-11434, Math. Scand. 31 (1972), 267-284. (1972) Zbl0272.13009MR0327752DOI10.7146/math.scand.a-11434
  10. Golod, E. S., G-dimension and generalized perfect ideals, Tr. Mat. Inst. Steklova 165 (1984), Russian 62-66. (1984) Zbl0577.13008MR0752933
  11. Hashimoto, M., 10.1017/CBO9780511565762, London Mathematical Society Lecture Note Series 282 Cambridge University Press, Cambridge (2000). (2000) Zbl0993.13007MR1797672DOI10.1017/CBO9780511565762
  12. Holm, H., 10.1016/j.jpaa.2003.11.007, J. Pure Appl. Algebra 189 (2004), 167-193. (2004) Zbl1050.16003MR2038564DOI10.1016/j.jpaa.2003.11.007
  13. Holm, H., Jørgensen, P., 10.1016/j.jpaa.2005.07.010, J. Pure Appl. Algebra 205 (2006), 423-445. (2006) Zbl1094.13021MR2203625DOI10.1016/j.jpaa.2005.07.010
  14. Holm, H., Jørgensen, P., 10.1216/JCA-2009-1-4-621, J. Commut. Algebra 1 (2009), 621-633. (2009) Zbl1184.13042MR2575834DOI10.1216/JCA-2009-1-4-621
  15. Krause, H., 10.1112/S0010437X05001375, Compos. Math. 141 (2005), 1128-1162. (2005) Zbl1090.18006MR2157133DOI10.1112/S0010437X05001375
  16. Nagata, M., Local Rings, Interscience Tracts in Pure and Applied Mathematics 13 Interscience Publisher a division of John Wiley and Sons, New York (1962). (1962) Zbl0123.03402MR0155856
  17. Reiten, I., 10.1090/S0002-9939-1972-0296067-7, Proc. Am. Math. Soc. 32 (1972), 417-420. (1972) Zbl0235.13016MR0296067DOI10.1090/S0002-9939-1972-0296067-7
  18. Salimi, M., Tavasoli, E., Yassemi, S., 10.1080/00927872.2012.717654, Commun. Algebra 42 (2014), 2213-2221. (2014) Zbl1291.13026MR3169700DOI10.1080/00927872.2012.717654
  19. Sather-Wagstaff, S., Semidualizing Modules, https://ssather.people.clemson.edu/DOCS/sdm.pdf. Zbl1282.13021
  20. Sather-Wagstaff, S., Sharif, T., White, D., 10.1112/jlms/jdm124, J. Lond. Math. Soc., II. Ser. 77 (2008), 481-502. (2008) Zbl1140.18010MR2400403DOI10.1112/jlms/jdm124
  21. Sather-Wagstaff, S., Sharif, T., White, D., 10.1007/s10468-009-9195-9, Algebr. Represent. Theory 14 (2011), 403-428. (2011) Zbl1317.13029MR2785915DOI10.1007/s10468-009-9195-9
  22. Takahashi, R., White, D., 10.7146/math.scand.a-15121, Math. Scand. 106 (2010), 5-22. (2010) Zbl1193.13012MR2603458DOI10.7146/math.scand.a-15121
  23. Vasconcelos, W. V., Divisor Theory in Module Categories, North-Holland Mathematics Studies 14. Notas de Matematica 5 North-Holland Publishing, Amsterdam (1974). (1974) Zbl0296.13005MR0498530
  24. White, D., 10.1216/JCA-2010-2-1-111, J. Commut. Algebra. 2 (2010), 111-137. (2010) Zbl1237.13029MR2607104DOI10.1216/JCA-2010-2-1-111

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.