Relative Gorenstein injective covers with respect to a semidualizing module
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 1, page 87-95
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topTavasoli, Elham, and Salimi, Maryam. "Relative Gorenstein injective covers with respect to a semidualizing module." Czechoslovak Mathematical Journal 67.1 (2017): 87-95. <http://eudml.org/doc/287865>.
@article{Tavasoli2017,
abstract = {Let $R$ be a commutative Noetherian ring and let $C$ be a semidualizing $R$-module. We prove a result about the covering properties of the class of relative Gorenstein injective modules with respect to $C$ which is a generalization of Theorem 1 by Enochs and Iacob (2015). Specifically, we prove that if for every $G_\{C\}$-injective module $G$, the character module $G^\{+\}$ is $G_\{C\}$-flat, then the class $\mathcal \{GI\}_\{C\}(R)\cap \mathcal \{A\}_\{C\}(R)$ is closed under direct sums and direct limits. Also, it is proved that under the above hypotheses the class $\mathcal \{GI\}_\{C\}(R)\cap \mathcal \{A\}_\{C\}(R)$ is covering.},
author = {Tavasoli, Elham, Salimi, Maryam},
journal = {Czechoslovak Mathematical Journal},
keywords = {semidualizing module; $G_\{C\}$-flat module; $G _\{C\}$-injective module; cover; envelope},
language = {eng},
number = {1},
pages = {87-95},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Relative Gorenstein injective covers with respect to a semidualizing module},
url = {http://eudml.org/doc/287865},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Tavasoli, Elham
AU - Salimi, Maryam
TI - Relative Gorenstein injective covers with respect to a semidualizing module
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 1
SP - 87
EP - 95
AB - Let $R$ be a commutative Noetherian ring and let $C$ be a semidualizing $R$-module. We prove a result about the covering properties of the class of relative Gorenstein injective modules with respect to $C$ which is a generalization of Theorem 1 by Enochs and Iacob (2015). Specifically, we prove that if for every $G_{C}$-injective module $G$, the character module $G^{+}$ is $G_{C}$-flat, then the class $\mathcal {GI}_{C}(R)\cap \mathcal {A}_{C}(R)$ is closed under direct sums and direct limits. Also, it is proved that under the above hypotheses the class $\mathcal {GI}_{C}(R)\cap \mathcal {A}_{C}(R)$ is covering.
LA - eng
KW - semidualizing module; $G_{C}$-flat module; $G _{C}$-injective module; cover; envelope
UR - http://eudml.org/doc/287865
ER -
References
top- Auslander, M., Bridger, M., 10.1090/memo/0094, Memoirs of the American Mathematical Society 94 American Mathematical Society, Providence (1969). (1969) Zbl0204.36402MR0269685DOI10.1090/memo/0094
- Avramov, L. L., Foxby, H. B., 10.1112/S0024611597000348, Proc. Lond. Math. Soc., III. Ser. 75 (1997), 241-270. (1997) Zbl0901.13011MR1455856DOI10.1112/S0024611597000348
- Christensen, L. W., 10.1090/S0002-9947-01-02627-7, Trans. Am. Math. Soc. 353 (2001), 1839-1883. (2001) Zbl0969.13006MR1813596DOI10.1090/S0002-9947-01-02627-7
- Enochs, E. E., Holm, H., 10.1007/s11856-009-0113-y, Isr. J. Math. 174 253-268 (2009). (2009) Zbl1184.13029MR2581218DOI10.1007/s11856-009-0113-y
- Enochs, E. E., Iacob, A., 10.1090/S0002-9939-2014-12232-5, Proc. Am. Math. Soc. 143 (2015), 5-12. (2015) Zbl1307.18013MR3272726DOI10.1090/S0002-9939-2014-12232-5
- Enochs, E. E., Jenda, O. M. G., 10.1515/9783110215212, De Gruyter Expositions in Mathematics 30 Walter de Gruyter, Berlin (2000). (2000) Zbl1238.13001MR2857612DOI10.1515/9783110215212
- Enochs, E. E., Jenda, O. M. G., López-Ramos, J. A., 10.7146/math.scand.a-14429, Math. Scand. 94 (2004), 46-62. (2004) Zbl1061.16003MR2032335DOI10.7146/math.scand.a-14429
- Enochs, E. E., López-Ramos, J. A., Kaplansky classes, Rend. Semin. Math. Univ. Padova 107 (2002), 67-79. (2002) Zbl1099.13019MR1926201
- Foxby, H. B., 10.7146/math.scand.a-11434, Math. Scand. 31 (1972), 267-284. (1972) Zbl0272.13009MR0327752DOI10.7146/math.scand.a-11434
- Golod, E. S., G-dimension and generalized perfect ideals, Tr. Mat. Inst. Steklova 165 (1984), Russian 62-66. (1984) Zbl0577.13008MR0752933
- Hashimoto, M., 10.1017/CBO9780511565762, London Mathematical Society Lecture Note Series 282 Cambridge University Press, Cambridge (2000). (2000) Zbl0993.13007MR1797672DOI10.1017/CBO9780511565762
- Holm, H., 10.1016/j.jpaa.2003.11.007, J. Pure Appl. Algebra 189 (2004), 167-193. (2004) Zbl1050.16003MR2038564DOI10.1016/j.jpaa.2003.11.007
- Holm, H., Jørgensen, P., 10.1016/j.jpaa.2005.07.010, J. Pure Appl. Algebra 205 (2006), 423-445. (2006) Zbl1094.13021MR2203625DOI10.1016/j.jpaa.2005.07.010
- Holm, H., Jørgensen, P., 10.1216/JCA-2009-1-4-621, J. Commut. Algebra 1 (2009), 621-633. (2009) Zbl1184.13042MR2575834DOI10.1216/JCA-2009-1-4-621
- Krause, H., 10.1112/S0010437X05001375, Compos. Math. 141 (2005), 1128-1162. (2005) Zbl1090.18006MR2157133DOI10.1112/S0010437X05001375
- Nagata, M., Local Rings, Interscience Tracts in Pure and Applied Mathematics 13 Interscience Publisher a division of John Wiley and Sons, New York (1962). (1962) Zbl0123.03402MR0155856
- Reiten, I., 10.1090/S0002-9939-1972-0296067-7, Proc. Am. Math. Soc. 32 (1972), 417-420. (1972) Zbl0235.13016MR0296067DOI10.1090/S0002-9939-1972-0296067-7
- Salimi, M., Tavasoli, E., Yassemi, S., 10.1080/00927872.2012.717654, Commun. Algebra 42 (2014), 2213-2221. (2014) Zbl1291.13026MR3169700DOI10.1080/00927872.2012.717654
- Sather-Wagstaff, S., Semidualizing Modules, https://ssather.people.clemson.edu/DOCS/sdm.pdf. Zbl1282.13021
- Sather-Wagstaff, S., Sharif, T., White, D., 10.1112/jlms/jdm124, J. Lond. Math. Soc., II. Ser. 77 (2008), 481-502. (2008) Zbl1140.18010MR2400403DOI10.1112/jlms/jdm124
- Sather-Wagstaff, S., Sharif, T., White, D., 10.1007/s10468-009-9195-9, Algebr. Represent. Theory 14 (2011), 403-428. (2011) Zbl1317.13029MR2785915DOI10.1007/s10468-009-9195-9
- Takahashi, R., White, D., 10.7146/math.scand.a-15121, Math. Scand. 106 (2010), 5-22. (2010) Zbl1193.13012MR2603458DOI10.7146/math.scand.a-15121
- Vasconcelos, W. V., Divisor Theory in Module Categories, North-Holland Mathematics Studies 14. Notas de Matematica 5 North-Holland Publishing, Amsterdam (1974). (1974) Zbl0296.13005MR0498530
- White, D., 10.1216/JCA-2010-2-1-111, J. Commut. Algebra. 2 (2010), 111-137. (2010) Zbl1237.13029MR2607104DOI10.1216/JCA-2010-2-1-111
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.