Antiassociative groupoids

Milton Braitt; David Hobby; Donald Silberger

Mathematica Bohemica (2017)

  • Volume: 142, Issue: 1, page 27-46
  • ISSN: 0862-7959

Abstract

top
Given a groupoid G , , and k 3 , we say that G is antiassociative if an only if for all x 1 , x 2 , x 3 G , ( x 1 x 2 ) x 3 and x 1 ( x 2 x 3 ) are never equal. Generalizing this, G , is k -antiassociative if and only if for all x 1 , x 2 , ... , x k G , any two distinct expressions made by putting parentheses in x 1 x 2 x 3 x k are never equal. We prove that for every k 3 , there exist finite groupoids that are k -antiassociative. We then generalize this, investigating when other pairs of groupoid terms can be made never equal.

How to cite

top

Braitt, Milton, Hobby, David, and Silberger, Donald. "Antiassociative groupoids." Mathematica Bohemica 142.1 (2017): 27-46. <http://eudml.org/doc/287871>.

@article{Braitt2017,
abstract = {Given a groupoid $\langle G, \star \rangle $, and $k \ge 3$, we say that $G$ is antiassociative if an only if for all $x_1, x_2, x_3 \in G$, $(x_1 \star x_2) \star x_3$ and $x_1 \star (x_2 \star x_3)$ are never equal. Generalizing this, $\langle G, \star \rangle $ is $k$-antiassociative if and only if for all $x_1, x_2, \ldots , x_k \in G$, any two distinct expressions made by putting parentheses in $x_1 \star x_2 \star x_3 \star \cdots \star x_k$ are never equal. We prove that for every $k \ge 3$, there exist finite groupoids that are $k$-antiassociative. We then generalize this, investigating when other pairs of groupoid terms can be made never equal.},
author = {Braitt, Milton, Hobby, David, Silberger, Donald},
journal = {Mathematica Bohemica},
keywords = {groupoid; unification; dissociative groupoids; generalized associative groupoids; formal products; reverse Polish notation},
language = {eng},
number = {1},
pages = {27-46},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Antiassociative groupoids},
url = {http://eudml.org/doc/287871},
volume = {142},
year = {2017},
}

TY - JOUR
AU - Braitt, Milton
AU - Hobby, David
AU - Silberger, Donald
TI - Antiassociative groupoids
JO - Mathematica Bohemica
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 142
IS - 1
SP - 27
EP - 46
AB - Given a groupoid $\langle G, \star \rangle $, and $k \ge 3$, we say that $G$ is antiassociative if an only if for all $x_1, x_2, x_3 \in G$, $(x_1 \star x_2) \star x_3$ and $x_1 \star (x_2 \star x_3)$ are never equal. Generalizing this, $\langle G, \star \rangle $ is $k$-antiassociative if and only if for all $x_1, x_2, \ldots , x_k \in G$, any two distinct expressions made by putting parentheses in $x_1 \star x_2 \star x_3 \star \cdots \star x_k$ are never equal. We prove that for every $k \ge 3$, there exist finite groupoids that are $k$-antiassociative. We then generalize this, investigating when other pairs of groupoid terms can be made never equal.
LA - eng
KW - groupoid; unification; dissociative groupoids; generalized associative groupoids; formal products; reverse Polish notation
UR - http://eudml.org/doc/287871
ER -

References

top
  1. Baader, F., Snyder, W., 10.1016/B978-044450813-3/50010-2, Handbook of Automated Reasoning A. Robinson et al. North-Holland/Elsevier, Amsterdam, MIT Press Cambridge 445-533 (2001). (2001) Zbl1011.68126DOI10.1016/B978-044450813-3/50010-2
  2. Braitt, M. S., Hobby, D., Silberger, D., Completely dissociative groupoids, Math. Bohem. 137 (2012), 79-97. (2012) Zbl1249.20075MR2978447
  3. Braitt, M. S., Silberger, D., Subassociative groupoids, Quasigroups Relat. Syst. 14 (2006), 11-26. (2006) Zbl1123.20059MR2268823
  4. Burris, S., Sankappanavar, H. P., 10.1007/978-1-4613-8130-3_3, Graduate Texts in Mathematics 78 Springer, New York (1981). (1981) Zbl0478.08001MR0648287DOI10.1007/978-1-4613-8130-3_3
  5. Drápal, A., Kepka, T., 10.1016/S0195-6698(85)80032-9, Eur. J. Comb. 6 (1985), 227-231. (1985) Zbl0612.05003MR0818596DOI10.1016/S0195-6698(85)80032-9
  6. Herbrand, J., Recherches sur la théorie de la démonstration, Travaux de la Société des Sciences et des Lettres de Varsovie 33 128 pages (1930), French. (1930) Zbl56.0824.02MR3532972
  7. Huet, G. P., Résolution d’équations dans des langages d’ordre 1 , 2 , , ω , Thèse d'État, Université de Paris VII (1976), French. (1976) 
  8. Ježek, J., Kepka, T., Medial groupoids, Rozpr. Cesk. Akad. Ved, Rada Mat. Prir. Ved 93 (1983), 93 pages. (1983) Zbl0527.20044MR0734873
  9. Knuth, D. E., The Art of Computer Programming. Vol. 1: Fundamental Algorithms, Addison-Wesley Series in Computer Science and Information Processing Addison-Wesley, London (1968). (1968) Zbl0191.17903MR0286317
  10. Robinson, J. A., 10.1145/321250.321253, J. Assoc. Comput. Mach. 12 (1965), 23-41. (1965) Zbl0139.12303MR0170494DOI10.1145/321250.321253
  11. Stanley, R. P., 10.1017/CBO9780511609589, Cambridge Studies in Advanced Mathematics 62 Cambridge University Press, Cambridge (1999). (1999) Zbl0928.05001MR1676282DOI10.1017/CBO9780511609589

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.