Antiassociative groupoids
Milton Braitt; David Hobby; Donald Silberger
Mathematica Bohemica (2017)
- Volume: 142, Issue: 1, page 27-46
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBraitt, Milton, Hobby, David, and Silberger, Donald. "Antiassociative groupoids." Mathematica Bohemica 142.1 (2017): 27-46. <http://eudml.org/doc/287871>.
@article{Braitt2017,
abstract = {Given a groupoid $\langle G, \star \rangle $, and $k \ge 3$, we say that $G$ is antiassociative if an only if for all $x_1, x_2, x_3 \in G$, $(x_1 \star x_2) \star x_3$ and $x_1 \star (x_2 \star x_3)$ are never equal. Generalizing this, $\langle G, \star \rangle $ is $k$-antiassociative if and only if for all $x_1, x_2, \ldots , x_k \in G$, any two distinct expressions made by putting parentheses in $x_1 \star x_2 \star x_3 \star \cdots \star x_k$ are never equal. We prove that for every $k \ge 3$, there exist finite groupoids that are $k$-antiassociative. We then generalize this, investigating when other pairs of groupoid terms can be made never equal.},
author = {Braitt, Milton, Hobby, David, Silberger, Donald},
journal = {Mathematica Bohemica},
keywords = {groupoid; unification; dissociative groupoids; generalized associative groupoids; formal products; reverse Polish notation},
language = {eng},
number = {1},
pages = {27-46},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Antiassociative groupoids},
url = {http://eudml.org/doc/287871},
volume = {142},
year = {2017},
}
TY - JOUR
AU - Braitt, Milton
AU - Hobby, David
AU - Silberger, Donald
TI - Antiassociative groupoids
JO - Mathematica Bohemica
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 142
IS - 1
SP - 27
EP - 46
AB - Given a groupoid $\langle G, \star \rangle $, and $k \ge 3$, we say that $G$ is antiassociative if an only if for all $x_1, x_2, x_3 \in G$, $(x_1 \star x_2) \star x_3$ and $x_1 \star (x_2 \star x_3)$ are never equal. Generalizing this, $\langle G, \star \rangle $ is $k$-antiassociative if and only if for all $x_1, x_2, \ldots , x_k \in G$, any two distinct expressions made by putting parentheses in $x_1 \star x_2 \star x_3 \star \cdots \star x_k$ are never equal. We prove that for every $k \ge 3$, there exist finite groupoids that are $k$-antiassociative. We then generalize this, investigating when other pairs of groupoid terms can be made never equal.
LA - eng
KW - groupoid; unification; dissociative groupoids; generalized associative groupoids; formal products; reverse Polish notation
UR - http://eudml.org/doc/287871
ER -
References
top- Baader, F., Snyder, W., 10.1016/B978-044450813-3/50010-2, Handbook of Automated Reasoning A. Robinson et al. North-Holland/Elsevier, Amsterdam, MIT Press Cambridge 445-533 (2001). (2001) Zbl1011.68126DOI10.1016/B978-044450813-3/50010-2
- Braitt, M. S., Hobby, D., Silberger, D., Completely dissociative groupoids, Math. Bohem. 137 (2012), 79-97. (2012) Zbl1249.20075MR2978447
- Braitt, M. S., Silberger, D., Subassociative groupoids, Quasigroups Relat. Syst. 14 (2006), 11-26. (2006) Zbl1123.20059MR2268823
- Burris, S., Sankappanavar, H. P., 10.1007/978-1-4613-8130-3_3, Graduate Texts in Mathematics 78 Springer, New York (1981). (1981) Zbl0478.08001MR0648287DOI10.1007/978-1-4613-8130-3_3
- Drápal, A., Kepka, T., 10.1016/S0195-6698(85)80032-9, Eur. J. Comb. 6 (1985), 227-231. (1985) Zbl0612.05003MR0818596DOI10.1016/S0195-6698(85)80032-9
- Herbrand, J., Recherches sur la théorie de la démonstration, Travaux de la Société des Sciences et des Lettres de Varsovie 33 128 pages (1930), French. (1930) Zbl56.0824.02MR3532972
- Huet, G. P., Résolution d’équations dans des langages d’ordre , Thèse d'État, Université de Paris VII (1976), French. (1976)
- Ježek, J., Kepka, T., Medial groupoids, Rozpr. Cesk. Akad. Ved, Rada Mat. Prir. Ved 93 (1983), 93 pages. (1983) Zbl0527.20044MR0734873
- Knuth, D. E., The Art of Computer Programming. Vol. 1: Fundamental Algorithms, Addison-Wesley Series in Computer Science and Information Processing Addison-Wesley, London (1968). (1968) Zbl0191.17903MR0286317
- Robinson, J. A., 10.1145/321250.321253, J. Assoc. Comput. Mach. 12 (1965), 23-41. (1965) Zbl0139.12303MR0170494DOI10.1145/321250.321253
- Stanley, R. P., 10.1017/CBO9780511609589, Cambridge Studies in Advanced Mathematics 62 Cambridge University Press, Cambridge (1999). (1999) Zbl0928.05001MR1676282DOI10.1017/CBO9780511609589
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.