A note on the adaptive estimation of the differential entropy by wavelet methods
Christophe Chesneau; Fabien Navarro; Oana Silvia Serea
Commentationes Mathematicae Universitatis Carolinae (2017)
- Volume: 58, Issue: 1, page 87-100
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topChesneau, Christophe, Navarro, Fabien, and Serea, Oana Silvia. "A note on the adaptive estimation of the differential entropy by wavelet methods." Commentationes Mathematicae Universitatis Carolinae 58.1 (2017): 87-100. <http://eudml.org/doc/287873>.
@article{Chesneau2017,
abstract = {In this note we consider the estimation of the differential entropy of a probability density function. We propose a new adaptive estimator based on a plug-in approach and wavelet methods. Under the mean $\mathbb \{L\}_p$ error, $p\ge 1$, this estimator attains fast rates of convergence for a wide class of functions. We present simulation results in order to support our theoretical findings.},
author = {Chesneau, Christophe, Navarro, Fabien, Serea, Oana Silvia},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {entropy; wavelet estimation; rate of convergence; mean $\mathbb \{L\}_p$ error},
language = {eng},
number = {1},
pages = {87-100},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A note on the adaptive estimation of the differential entropy by wavelet methods},
url = {http://eudml.org/doc/287873},
volume = {58},
year = {2017},
}
TY - JOUR
AU - Chesneau, Christophe
AU - Navarro, Fabien
AU - Serea, Oana Silvia
TI - A note on the adaptive estimation of the differential entropy by wavelet methods
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2017
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 58
IS - 1
SP - 87
EP - 100
AB - In this note we consider the estimation of the differential entropy of a probability density function. We propose a new adaptive estimator based on a plug-in approach and wavelet methods. Under the mean $\mathbb {L}_p$ error, $p\ge 1$, this estimator attains fast rates of convergence for a wide class of functions. We present simulation results in order to support our theoretical findings.
LA - eng
KW - entropy; wavelet estimation; rate of convergence; mean $\mathbb {L}_p$ error
UR - http://eudml.org/doc/287873
ER -
References
top- Antoniadis A., 10.1007/BF03178905, J. Ital. Statist. Soc. Series B 6 (1997), 97–144. DOI10.1007/BF03178905
- Beirlant J., Dudewicz E.J., Gyorfi L., van der Meulen E.C., Nonparametric entropy estimation: an overview, Int. J. Math. Stat. Sci. 6 (1997), 17–39. Zbl0882.62003MR1471870
- Bouzebda S., Elhattab I., 10.1016/j.crma.2009.04.021, C.R. Math. Acad. Sci. Paris 347 (2009), no. 13–14, 821–826. Zbl1167.62410MR2543991DOI10.1016/j.crma.2009.04.021
- Bouzebda S., Elhattab I., 10.1016/j.crma.2009.12.007, C.R. Math. Acad. Sci. Paris 348 (2010), no. 5–6, 317–321. Zbl1185.62072MR2600131DOI10.1016/j.crma.2009.12.007
- Bouzebda S., Elhattab I., 10.1214/11-EJS614, Electron. J. Stat. 5 (2011), 440–459. Zbl1274.62186MR2802051DOI10.1214/11-EJS614
- Caroll R.J., Hall P., 10.1080/01621459.1988.10478718, J. Amer. Statist. Assoc. 83 (1988), 1184–1186. MR0997599DOI10.1080/01621459.1988.10478718
- Cohen A., Daubechies I., Vial P., 10.1006/acha.1993.1005, Appl. Comput. Harmon. Anal. 24 (1993), no. 1, 54–81. Zbl0795.42018MR1256527DOI10.1006/acha.1993.1005
- Daubechies I., Ten Lectures on Wavelets, SIAM, Philadelphia, PA, 1992. Zbl1006.42030MR1162107
- Delyon B., Juditsky A., 10.1006/acha.1996.0017, Appl. Comput. Harmon. Anal. 3 (1996), 215–228. Zbl0865.62023MR1400080DOI10.1006/acha.1996.0017
- Devroye L., 10.2307/3314852, Canad. J. Statist. 17 (1989), 235–239. Zbl0679.62029MR1033106DOI10.2307/3314852
- Dmitriev Yu.G., Tarasenko F.P., On the estimation functions of the probability density and its derivatives, Theory Probab. Appl. 18 (1973), 628–633. MR0359157
- Donoho D.L., Johnstone I.M., Kerkyacharian G., Picard D., 10.1214/aos/1032894451, Ann. Statist. 24 (1996), 508–539. Zbl0860.62032MR1394974DOI10.1214/aos/1032894451
- Fan J., 10.1214/aos/1176348248, Ann. Statist. 19 (1991), 1257–1272. MR1126324DOI10.1214/aos/1176348248
- Györfi L., van der Meulen E.C., An entropy estimate based on a kernel density estimation, in Limit theorems in probability and kernel-type estimators of Shannon's entropy statistics (Pécs, 1989), Colloq. Math. Soc. János Bolyai, 57, North-Holland, Amsterdam, 1990, pp. 229-240. Zbl0724.62038MR1116790
- Györfi L., van der Meulen E.C., On the nonparametric estimation of the entropy functional, in Nonparametric functional estimation and related topics (Spetses, 1990), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 335, Kluwer Acad. Publ., Dordrecht, 1991, pp. 81–95. Zbl0739.62029MR1154321
- Härdle W., Kerkyacharian G., Picard D., Tsybakov A., 10.1007/978-1-4612-2222-4, Lectures Notes in Statistics, 129, Springer, New York, 1998. MR1618204DOI10.1007/978-1-4612-2222-4
- Joe H., 10.1007/BF00057735, Ann. Inst. Statist. Math. 41 (1989), no. 4, 683–697. Zbl0698.62042MR1039399DOI10.1007/BF00057735
- Kerkyacharian G., Picard D., 10.1007/BF02595738, Test 9 (2000), no. 2, 283–345. MR1821645DOI10.1007/BF02595738
- Mallat S., A Wavelet Tour of Signal Processing. The sparse way, third edition, with contributions from Gabriel Peyré, Elsevier/Academic Press, Amsterdam, 2009. Zbl1170.94003MR2479996
- Mason D.M., Representations for integral functionals of kernel density estimators, Austr. J. Stat. 32 (2003), no. 1–2, 131–142.
- Meyer Y., Wavelets and Operators, Cambridge University Press, Cambridge, 1992. Zbl0819.42016MR1228209
- Mokkadem A., 10.1109/18.42194, IEEE Trans. Inform. Theory 35 (1989), 193–196. MR0995340DOI10.1109/18.42194
- Prakasa Rao B.L.S., Nonparametric Functional Estimation, Academic Press, Orlando, 1983. Zbl1069.62519MR0740865
- Shannon C.E., 10.1002/j.1538-7305.1948.tb01338.x, Bell System Tech. J. 27 (1948), 379–423, 623–656. Zbl1154.94303MR0026286DOI10.1002/j.1538-7305.1948.tb01338.x
- Silverman B.W., Density estimation: for statistics and data analysis, Chapman & Hall, London, 1986. Zbl0617.62042MR0848134
- Tsybakov A., Introduction à l'estimation nonparamétrique, Springer, Berlin, 2004. MR2013911
- Vidakovic B., Statistical Modeling by Wavelets, John Wiley & Sons, Inc., New York, 1999, 384 pp. Zbl0924.62032MR1681904
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.