A note on the adaptive estimation of the differential entropy by wavelet methods

Christophe Chesneau; Fabien Navarro; Oana Silvia Serea

Commentationes Mathematicae Universitatis Carolinae (2017)

  • Volume: 58, Issue: 1, page 87-100
  • ISSN: 0010-2628

Abstract

top
In this note we consider the estimation of the differential entropy of a probability density function. We propose a new adaptive estimator based on a plug-in approach and wavelet methods. Under the mean 𝕃 p error, p 1 , this estimator attains fast rates of convergence for a wide class of functions. We present simulation results in order to support our theoretical findings.

How to cite

top

Chesneau, Christophe, Navarro, Fabien, and Serea, Oana Silvia. "A note on the adaptive estimation of the differential entropy by wavelet methods." Commentationes Mathematicae Universitatis Carolinae 58.1 (2017): 87-100. <http://eudml.org/doc/287873>.

@article{Chesneau2017,
abstract = {In this note we consider the estimation of the differential entropy of a probability density function. We propose a new adaptive estimator based on a plug-in approach and wavelet methods. Under the mean $\mathbb \{L\}_p$ error, $p\ge 1$, this estimator attains fast rates of convergence for a wide class of functions. We present simulation results in order to support our theoretical findings.},
author = {Chesneau, Christophe, Navarro, Fabien, Serea, Oana Silvia},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {entropy; wavelet estimation; rate of convergence; mean $\mathbb \{L\}_p$ error},
language = {eng},
number = {1},
pages = {87-100},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A note on the adaptive estimation of the differential entropy by wavelet methods},
url = {http://eudml.org/doc/287873},
volume = {58},
year = {2017},
}

TY - JOUR
AU - Chesneau, Christophe
AU - Navarro, Fabien
AU - Serea, Oana Silvia
TI - A note on the adaptive estimation of the differential entropy by wavelet methods
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2017
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 58
IS - 1
SP - 87
EP - 100
AB - In this note we consider the estimation of the differential entropy of a probability density function. We propose a new adaptive estimator based on a plug-in approach and wavelet methods. Under the mean $\mathbb {L}_p$ error, $p\ge 1$, this estimator attains fast rates of convergence for a wide class of functions. We present simulation results in order to support our theoretical findings.
LA - eng
KW - entropy; wavelet estimation; rate of convergence; mean $\mathbb {L}_p$ error
UR - http://eudml.org/doc/287873
ER -

References

top
  1. Antoniadis A., 10.1007/BF03178905, J. Ital. Statist. Soc. Series B 6 (1997), 97–144. DOI10.1007/BF03178905
  2. Beirlant J., Dudewicz E.J., Gyorfi L., van der Meulen E.C., Nonparametric entropy estimation: an overview, Int. J. Math. Stat. Sci. 6 (1997), 17–39. Zbl0882.62003MR1471870
  3. Bouzebda S., Elhattab I., 10.1016/j.crma.2009.04.021, C.R. Math. Acad. Sci. Paris 347 (2009), no. 13–14, 821–826. Zbl1167.62410MR2543991DOI10.1016/j.crma.2009.04.021
  4. Bouzebda S., Elhattab I., 10.1016/j.crma.2009.12.007, C.R. Math. Acad. Sci. Paris 348 (2010), no. 5–6, 317–321. Zbl1185.62072MR2600131DOI10.1016/j.crma.2009.12.007
  5. Bouzebda S., Elhattab I., 10.1214/11-EJS614, Electron. J. Stat. 5 (2011), 440–459. Zbl1274.62186MR2802051DOI10.1214/11-EJS614
  6. Caroll R.J., Hall P., 10.1080/01621459.1988.10478718, J. Amer. Statist. Assoc. 83 (1988), 1184–1186. MR0997599DOI10.1080/01621459.1988.10478718
  7. Cohen A., Daubechies I., Vial P., 10.1006/acha.1993.1005, Appl. Comput. Harmon. Anal. 24 (1993), no. 1, 54–81. Zbl0795.42018MR1256527DOI10.1006/acha.1993.1005
  8. Daubechies I., Ten Lectures on Wavelets, SIAM, Philadelphia, PA, 1992. Zbl1006.42030MR1162107
  9. Delyon B., Juditsky A., 10.1006/acha.1996.0017, Appl. Comput. Harmon. Anal. 3 (1996), 215–228. Zbl0865.62023MR1400080DOI10.1006/acha.1996.0017
  10. Devroye L., 10.2307/3314852, Canad. J. Statist. 17 (1989), 235–239. Zbl0679.62029MR1033106DOI10.2307/3314852
  11. Dmitriev Yu.G., Tarasenko F.P., On the estimation functions of the probability density and its derivatives, Theory Probab. Appl. 18 (1973), 628–633. MR0359157
  12. Donoho D.L., Johnstone I.M., Kerkyacharian G., Picard D., 10.1214/aos/1032894451, Ann. Statist. 24 (1996), 508–539. Zbl0860.62032MR1394974DOI10.1214/aos/1032894451
  13. Fan J., 10.1214/aos/1176348248, Ann. Statist. 19 (1991), 1257–1272. MR1126324DOI10.1214/aos/1176348248
  14. Györfi L., van der Meulen E.C., An entropy estimate based on a kernel density estimation, in Limit theorems in probability and kernel-type estimators of Shannon's entropy statistics (Pécs, 1989), Colloq. Math. Soc. János Bolyai, 57, North-Holland, Amsterdam, 1990, pp. 229-240. Zbl0724.62038MR1116790
  15. Györfi L., van der Meulen E.C., On the nonparametric estimation of the entropy functional, in Nonparametric functional estimation and related topics (Spetses, 1990), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 335, Kluwer Acad. Publ., Dordrecht, 1991, pp. 81–95. Zbl0739.62029MR1154321
  16. Härdle W., Kerkyacharian G., Picard D., Tsybakov A., 10.1007/978-1-4612-2222-4, Lectures Notes in Statistics, 129, Springer, New York, 1998. MR1618204DOI10.1007/978-1-4612-2222-4
  17. Joe H., 10.1007/BF00057735, Ann. Inst. Statist. Math. 41 (1989), no. 4, 683–697. Zbl0698.62042MR1039399DOI10.1007/BF00057735
  18. Kerkyacharian G., Picard D., 10.1007/BF02595738, Test 9 (2000), no. 2, 283–345. MR1821645DOI10.1007/BF02595738
  19. Mallat S., A Wavelet Tour of Signal Processing. The sparse way, third edition, with contributions from Gabriel Peyré, Elsevier/Academic Press, Amsterdam, 2009. Zbl1170.94003MR2479996
  20. Mason D.M., Representations for integral functionals of kernel density estimators, Austr. J. Stat. 32 (2003), no. 1–2, 131–142. 
  21. Meyer Y., Wavelets and Operators, Cambridge University Press, Cambridge, 1992. Zbl0819.42016MR1228209
  22. Mokkadem A., 10.1109/18.42194, IEEE Trans. Inform. Theory 35 (1989), 193–196. MR0995340DOI10.1109/18.42194
  23. Prakasa Rao B.L.S., Nonparametric Functional Estimation, Academic Press, Orlando, 1983. Zbl1069.62519MR0740865
  24. Shannon C.E., 10.1002/j.1538-7305.1948.tb01338.x, Bell System Tech. J. 27 (1948), 379–423, 623–656. Zbl1154.94303MR0026286DOI10.1002/j.1538-7305.1948.tb01338.x
  25. Silverman B.W., Density estimation: for statistics and data analysis, Chapman & Hall, London, 1986. Zbl0617.62042MR0848134
  26. Tsybakov A., Introduction à l'estimation nonparamétrique, Springer, Berlin, 2004. MR2013911
  27. Vidakovic B., Statistical Modeling by Wavelets, John Wiley & Sons, Inc., New York, 1999, 384 pp. Zbl0924.62032MR1681904

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.