Some Classes of Lorentzian α -Sasakian Manifolds Admitting a Quarter-symmetric Metric Connection

Santu DEY; Buddhadev Pal; Arindam BHATTACHARYYA

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2016)

  • Volume: 55, Issue: 2, page 41-55
  • ISSN: 0231-9721

Abstract

top
The object of the present paper is to study a quarter-symmetric metric connection in an Lorentzian α -Sasakian manifold. We study some curvature properties of an Lorentzian α -Sasakian manifold with respect to the quarter-symmetric metric connection. We study locally φ -symmetric, φ -symmetric, locally projective φ -symmetric, ξ -projectively flat Lorentzian α -Sasakian manifold with respect to the quarter-symmetric metric connection.

How to cite

top

DEY, Santu, Pal, Buddhadev, and BHATTACHARYYA, Arindam. "Some Classes of Lorentzian $\alpha $-Sasakian Manifolds Admitting a Quarter-symmetric Metric Connection." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 55.2 (2016): 41-55. <http://eudml.org/doc/287875>.

@article{DEY2016,
abstract = {The object of the present paper is to study a quarter-symmetric metric connection in an Lorentzian $\alpha $-Sasakian manifold. We study some curvature properties of an Lorentzian $\alpha $-Sasakian manifold with respect to the quarter-symmetric metric connection. We study locally $\phi $-symmetric, $\phi $-symmetric, locally projective $\phi $-symmetric, $\xi $-projectively flat Lorentzian $\alpha $-Sasakian manifold with respect to the quarter-symmetric metric connection.},
author = {DEY, Santu, Pal, Buddhadev, BHATTACHARYYA, Arindam},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Quarter-symmetric metric connection; Lorentzian $\alpha $-Sasakian manifold; locally $\phi $-symmetric manifold; locally projective $\phi $-symmetric manifold; $\xi $-projectively flat Lorentzian $\alpha $-Sasakian manifold},
language = {eng},
number = {2},
pages = {41-55},
publisher = {Palacký University Olomouc},
title = {Some Classes of Lorentzian $\alpha $-Sasakian Manifolds Admitting a Quarter-symmetric Metric Connection},
url = {http://eudml.org/doc/287875},
volume = {55},
year = {2016},
}

TY - JOUR
AU - DEY, Santu
AU - Pal, Buddhadev
AU - BHATTACHARYYA, Arindam
TI - Some Classes of Lorentzian $\alpha $-Sasakian Manifolds Admitting a Quarter-symmetric Metric Connection
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2016
PB - Palacký University Olomouc
VL - 55
IS - 2
SP - 41
EP - 55
AB - The object of the present paper is to study a quarter-symmetric metric connection in an Lorentzian $\alpha $-Sasakian manifold. We study some curvature properties of an Lorentzian $\alpha $-Sasakian manifold with respect to the quarter-symmetric metric connection. We study locally $\phi $-symmetric, $\phi $-symmetric, locally projective $\phi $-symmetric, $\xi $-projectively flat Lorentzian $\alpha $-Sasakian manifold with respect to the quarter-symmetric metric connection.
LA - eng
KW - Quarter-symmetric metric connection; Lorentzian $\alpha $-Sasakian manifold; locally $\phi $-symmetric manifold; locally projective $\phi $-symmetric manifold; $\xi $-projectively flat Lorentzian $\alpha $-Sasakian manifold
UR - http://eudml.org/doc/287875
ER -

References

top
  1. Bagewadi, C. S., Prakasha, D. G., Venkatesha, A., A Study of Ricci quarter-symmetric metric connection on a Riemannian manifold, . Indian J. Math. 50, 3 (2008), 607–615. (2008) Zbl1159.53323MR2483702
  2. Boeckx, E., Buecken, P., Vanhecke, L., 10.1017/S0017089599000579, . Glasgow Math. J. 41 (1999), 409–416. (1999) MR1720426DOI10.1017/S0017089599000579
  3. Formella, S., Mikeš, J., Geodesic mappings of Einstein spaces, . Ann. Sci. Stetinenses 9 (1994), 31–40. (1994) 
  4. Friedmann, A., Schouten, J. A., 10.1007/BF01187468, . Math. Zeitschr 21 (1924), 211–223. (1924) MR1544701DOI10.1007/BF01187468
  5. Golab, S., On semi-symmetric and quarter-symmetric linear connectionsTensor, N. S., : Tensor, N. S. 29 (1975), 249–254. (1975) MR0383275
  6. Hayden, H. A., 10.1112/plms/s2-34.1.27, . Proc. London Math. Soc. 34 (1932), 27–50. (1932) MR1576150DOI10.1112/plms/s2-34.1.27
  7. Hinterleitner, I., Mikeš, J., Geodesic mappings and Einstein spaces, . In: Geometric Methods in Physics, Trends in Mathematics, Birkhäuser, Basel, 2013, 331–335. (2013) Zbl1268.53049MR3364052
  8. Mikeš, J., Differential Geometry of Special Mappings, . Palacky Univ. Press, Olomouc, 2015. (2015) Zbl1337.53001MR3442960
  9. Mikeš, J., 10.1007/BF02365193, . J. Math. Sci. 78, 3 (1996), 311–333. (1996) MR1384327DOI10.1007/BF02365193
  10. Mikeš, J., 10.1007/BF02414875, . J. Math. Sci. 89, 3 (1998), 1334–1353. (1998) MR1619720DOI10.1007/BF02414875
  11. Mikeš, J., Vanžurová, A., Hinterleitner, I., Geodesic Mappings and Some Generalizations, . Palacky Univ. Press, Olomouc, 2009. (2009) Zbl1222.53002MR2682926
  12. Mikeš, J., Starko, G. A., On hyperbolically Sasakian and equidistant hyperbolically Kählerian spaces, . Ukr. Geom. Sb. 32 (1989), 92–98. (1989) Zbl0711.53042MR1049372
  13. Mikeš, J., 10.1007/BF01158415, . Math. Notes 38 (1985), 855–858. (1985) Zbl0594.53024MR0819428DOI10.1007/BF01158415
  14. Mikeš, J., On Sasaki spaces and equidistant Kähler spaces, . Sov. Math., Dokl. 34 (1987), 428–431. (1987) Zbl0631.53018MR0819428
  15. Mishra, R. S., Pandey, S. N., On quarter-symmetric metric F-connection, . Tensor, N. S. 34 (1980), 1–7. (1980) MR0570556
  16. Prakashs, D. G., Bagewadi, C. S., Basavarajappa, N. S., On pseudosymmetric Lorentzian α -Sasakian manifolds, . IJPAM 48, 1 (2008), 57–65. (2008) MR2456434
  17. Rastogi, S. C., On quarter-symmetric connection, . C. R. Acad. Sci. Bulgar 31 (1978), 811–814. (1978) MR0522544
  18. Rastogi, S. C., On quarter-symmetric metric connection, . Tensor 44 (1987), 133–141. (1987) MR0944894
  19. Sinyukov, N. S., Geodesic mappings of Riemannian spaces, . Nauka, Moscow, 1979. (1979) Zbl0637.53020
  20. Takahashi, T., 10.2748/tmj/1178240699, . Tohoku Math. J. 29 (1977), 91–113. (1977) MR0440472DOI10.2748/tmj/1178240699
  21. Tripathi, M. M., Dwivedi, M. K., 10.1007/s12044-008-0029-1, . Proc. Indian Acad. Sci. Math. Sci. 118 (2008), 371–379. (2008) Zbl1155.53020MR2450241DOI10.1007/s12044-008-0029-1
  22. Yano, K., On semi-symmetric metric connections, . Rev. Roumaine Math. Pures Appl. 15 (1970), 1579–1586. (1970) MR0275321
  23. Yano, K., Imai, T., Quarter-symmetric metric connections and their curvature tensors, . Tensor, N. S. 38 (1982), 13–18. (1982) Zbl0504.53014MR0832619
  24. Yildiz, A., Murathan, C., On Lorentzian α -Sasakian manifolds, . Kyungpook Math. J. 45 (2005), 95–103. (2005) Zbl1085.53023MR2142281
  25. Yadav, S., Suthar, D. L., Certain derivation on Lorentzian α -Sasakian manifolds, . Mathematics and Decision Science 12, 2 (2012), 1–6. (2012) MR2814463
  26. Yildiz, A., Turan, M., Acet, B. F., On three dimensional Lorentzian α -Sasakian manifolds, . Bulletin of Mathematical Analysis and Applications 1, 3 (2009), 90–98. (2009) Zbl1312.53071MR2578119

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.