On solutions set of a multivalued stochastic differential equation
Marek T. Malinowski; Ravi P. Agarwal
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 1, page 11-28
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMalinowski, Marek T., and Agarwal, Ravi P.. "On solutions set of a multivalued stochastic differential equation." Czechoslovak Mathematical Journal 67.1 (2017): 11-28. <http://eudml.org/doc/287879>.
@article{Malinowski2017,
abstract = {We analyse multivalued stochastic differential equations driven by semimartingales. Such equations are understood as the corresponding multivalued stochastic integral equations. Under suitable conditions, it is shown that the considered multivalued stochastic differential equation admits at least one solution. Then we prove that the set of all solutions is closed and bounded.},
author = {Malinowski, Marek T., Agarwal, Ravi P.},
journal = {Czechoslovak Mathematical Journal},
keywords = {multivalued stochastic differential equation; Covitz-Nadler fixed point theorem; multivalued stochastic process},
language = {eng},
number = {1},
pages = {11-28},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On solutions set of a multivalued stochastic differential equation},
url = {http://eudml.org/doc/287879},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Malinowski, Marek T.
AU - Agarwal, Ravi P.
TI - On solutions set of a multivalued stochastic differential equation
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 1
SP - 11
EP - 28
AB - We analyse multivalued stochastic differential equations driven by semimartingales. Such equations are understood as the corresponding multivalued stochastic integral equations. Under suitable conditions, it is shown that the considered multivalued stochastic differential equation admits at least one solution. Then we prove that the set of all solutions is closed and bounded.
LA - eng
KW - multivalued stochastic differential equation; Covitz-Nadler fixed point theorem; multivalued stochastic process
UR - http://eudml.org/doc/287879
ER -
References
top- Agarwal, R. P., O'Regan, D., Existence for set differential equations via multivalued operator equations, Differential Equations and Applications 5 1-5 Nova Science Publishers, New York (2007). (2007) MR2353574
- Ahmad, B., Sivasundaram, S., -stability of impulsive hybrid setvalued differential equations with delay by perturbing Lyapunov functions, Commun. Appl. Anal. 12 (2008), 137-145. (2008) Zbl1185.34102MR2191489
- Anguraj, A., Vinodkumar, A., Chang, Y. K., Existence results on impulsive stochastic functional differential inclusions with delays, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 20 (2013), 301-318. (2013) Zbl1268.34164MR3098454
- Aubin, J.-P., Prato, G. Da, 10.1080/07362999808809512, Stochastic Anal. Appl. 16 (1998), 1-15. (1998) Zbl0931.60059MR1603852DOI10.1080/07362999808809512
- Aubin, J.-P., Frankowska, H., 10.1007/978-0-8176-4848-0, Modern Birkhäuser Classics. Birkhäuser, Boston (2009). (2009) Zbl1168.49014MR2458436DOI10.1007/978-0-8176-4848-0
- Balasubramaniam, P., Ntouyas, S. K., 10.1016/j.jmaa.2005.12.005, J. Math. Anal. Appl. 324 (2006), 161-176. (2006) Zbl1118.93007MR2262463DOI10.1016/j.jmaa.2005.12.005
- Bhaskar, T. G., Lakshmikantham, V., Devi, J. Vasundhara, 10.1016/j.na.2005.02.036, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 63 (2005), 735-744. (2005) Zbl1153.34313MR2188146DOI10.1016/j.na.2005.02.036
- Bouchen, A., Arni, A. El, Ouknine, Y., 10.1080/17442500008834227, Stochastics Stochastics Rep. 68 (2000), 297-327. (2000) Zbl0957.60069MR1746184DOI10.1080/17442500008834227
- Burachik, R. S., Iusem, A. N., 10.1007/978-0-387-69757-4, Springer Optimization and Its Applications. Springer, Berlin (2008). (2008) MR2353163DOI10.1007/978-0-387-69757-4
- Chung, K. L., Williams, R. J., 10.1007/978-1-4757-9174-7, Progress in Probability and Statistics 4. Birkhäuser, Boston (1983). (1983) Zbl0527.60058MR0711774DOI10.1007/978-1-4757-9174-7
- H. Covitz, S. B. Nadler, Jr., 10.1007/BF02771543, Isr. J. Math. 8 (1970), 5-11. (1970) Zbl0192.59802MR0263062DOI10.1007/BF02771543
- Prato, G. Da, Frankowska, H., 10.1080/07362999408809361, Stochastic Anal. Appl. 12 (1994), 409-426. (1994) Zbl0810.60059MR1285803DOI10.1080/07362999408809361
- Blasi, F. S. De, Iervolino, F., Equazioni differenziali con soluzioni a valore compatto convesso, Boll. Unione Mat. Ital., IV. Ser., 2 (1969), 491-501 Errata corrige ibid. 4 1969 699. (1969) Zbl0195.38501MR0265653
- Dunford, N., Schwartz, J. T., Linear Operators. I. General Theory, Pure and Applied Mathematics 7. Interscience Publishers, New York (1958). (1958) Zbl0084.10402MR0117523
- Hiai, F., Umegaki, H., 10.1016/0047-259X(77)90037-9, J. Multivariate Anal. 7 (1977), 149-182. (1977) Zbl0368.60006MR0507504DOI10.1016/0047-259X(77)90037-9
- Hu, S., Papageorgiou, N. S., Handbook of Multivalued Analysis. Volume I: Theory, Mathematics and Its Applications. Kluwer Academic Publishers, Dordrecht (1997). (1997) Zbl0887.47001MR1485775
- Jiang, J., Li, C. F., Chen, H. T., 10.1007/s12190-012-0604-6, J. Appl. Math. Comput. 41 (2013), 183-196. (2013) Zbl1302.34114MR3017116DOI10.1007/s12190-012-0604-6
- Kuratowski, K., Ryll-Nardzewski, C., A general theorem on selectors, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 13 (1965), 397-403. (1965) Zbl0152.21403MR0188994
- Lakshmikantham, V., Bhaskar, T. G., Devi, J. Vasundhara, Theory of Set Differential Equations in a Metric Spaces, Cambridge Scientific Publishers, Cambridge (2006). (2006) Zbl1156.34003MR2438229
- Malinowski, M. T., 10.1016/j.amc.2012.06.019, Appl. Math. Comput. 219 (2012), 289-305. (2012) Zbl1297.34073MR2949593DOI10.1016/j.amc.2012.06.019
- Malinowski, M. T., 10.1016/j.amc.2012.03.027, Appl. Math. Comput. 218 (2012), 9427-9437. (2012) Zbl1252.34071MR2923039DOI10.1016/j.amc.2012.03.027
- Malinowski, M. T., 10.1016/j.jmaa.2013.06.054, J. Math. Anal. Appl. 408 (2013), 669-680. (2013) Zbl1306.60062MR3085061DOI10.1016/j.jmaa.2013.06.054
- Malinowski, M. T., 10.1515/math-2015-0011, Open. Math. (electronic only) 13 (2015), 106-134. (2015) Zbl1307.93381MR3314167DOI10.1515/math-2015-0011
- Park, J. Y., Jeong, J. U., 10.1186/1687-1847-2014-17, Adv. Difference Equ. (electronic only) 2014 (2014), Article ID 17, 17 pages. (2014) Zbl1343.93017MR3213919DOI10.1186/1687-1847-2014-17
- Protter, P., 10.1007/978-3-662-02619-9, Applications of Mathematics 21. Springer, Berlin (1990). (1990) Zbl0694.60047MR1037262DOI10.1007/978-3-662-02619-9
- Wang, P., Sun, W., 10.1155/2014/241034, Sci. World J. (2014), (2014), Article ID 241034, 7 pages. (2014) DOI10.1155/2014/241034
- Yun, Y. S., On the estimation of approximate solution for SDI, Korean Annals Math. 20 (2003), 63-69. (2003)
- Yun, Y. S., 10.4134/BKMS.2003.40.1.159, Bull. Korean Math. Soc. 40 (2003), 159-165. (2003) Zbl1034.60009MR1958233DOI10.4134/BKMS.2003.40.1.159
- Yun, Y. S., 10.4134/CKMS.2005.20.1.135, Commun. Korean Math. Soc. 20 (2005), 135-144. (2005) Zbl1093.60047MR2167083DOI10.4134/CKMS.2005.20.1.135
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.