Pseudo almost periodicity of fractional integro-differential equations with impulsive effects in Banach spaces
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 1, page 123-141
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topXia, Zhinan. "Pseudo almost periodicity of fractional integro-differential equations with impulsive effects in Banach spaces." Czechoslovak Mathematical Journal 67.1 (2017): 123-141. <http://eudml.org/doc/287880>.
@article{Xia2017,
abstract = {In this paper, for the impulsive fractional integro-differential equations involving Caputo fractional derivative in Banach space, we investigate the existence and uniqueness of a pseudo almost periodic $PC$-mild solution. The working tools are based on the fixed point theorems, the fractional powers of operators and fractional calculus. Some known results are improved and generalized. Finally, existence and uniqueness of a pseudo almost periodic $PC$-mild solution of a two-dimensional impulsive fractional predator-prey system with diffusion are investigated.},
author = {Xia, Zhinan},
journal = {Czechoslovak Mathematical Journal},
keywords = {impulsive fractional integro-differential equation; pseudo almost periodicity; probability density; fractional powers of operator},
language = {eng},
number = {1},
pages = {123-141},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Pseudo almost periodicity of fractional integro-differential equations with impulsive effects in Banach spaces},
url = {http://eudml.org/doc/287880},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Xia, Zhinan
TI - Pseudo almost periodicity of fractional integro-differential equations with impulsive effects in Banach spaces
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 1
SP - 123
EP - 141
AB - In this paper, for the impulsive fractional integro-differential equations involving Caputo fractional derivative in Banach space, we investigate the existence and uniqueness of a pseudo almost periodic $PC$-mild solution. The working tools are based on the fixed point theorems, the fractional powers of operators and fractional calculus. Some known results are improved and generalized. Finally, existence and uniqueness of a pseudo almost periodic $PC$-mild solution of a two-dimensional impulsive fractional predator-prey system with diffusion are investigated.
LA - eng
KW - impulsive fractional integro-differential equation; pseudo almost periodicity; probability density; fractional powers of operator
UR - http://eudml.org/doc/287880
ER -
References
top- Adolfsson, K., Enelund, J., Olsson, P., 10.1007/s11043-005-3442-1, Mech. Time-Depend. Mat. 9 (2005), 15-34. (2005) DOI10.1007/s11043-005-3442-1
- Dads, E. Ait, Arino, O., 10.1016/0362-546X(95)00027-S, Nonlinear Anal., Theory Methods Appl. 27 (1996), 369-386. (1996) Zbl0855.34055MR1393143DOI10.1016/0362-546X(95)00027-S
- Akhmet, M. U., Beklioglu, M., Ergenc, T., Tkachenko, V. I., 10.1016/j.nonrwa.2005.11.007, Nonlinear Anal., Real World Appl. 7 (2006), 1255-1267. (2006) Zbl1114.35097MR2260913DOI10.1016/j.nonrwa.2005.11.007
- Cao, J., Yang, Q., Huang, Z., 10.1016/j.na.2010.08.036, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 224-234. (2011) Zbl1213.34089MR2734991DOI10.1016/j.na.2010.08.036
- Chang, Y. K., Zhang, R., N'Guérékata, G. M., 10.1016/j.camwa.2012.02.039, Comput. Math. Appl. 64 (2012), 3160-3170. (2012) Zbl1268.34010MR2989344DOI10.1016/j.camwa.2012.02.039
- Chérif, F., 10.1007/s12591-012-0156-0, Differ. Equ. Dyn. Syst. 22 (2014), 73-91. (2014) Zbl1298.34132MR3149175DOI10.1007/s12591-012-0156-0
- Debbouche, A., El-borai, M. M., Weak almost periodic and optimal mild solutions of fractional evolution equations, Electron. J. Differ. Equ. (electronic only) 2009 (2009), No. 46, 8 pages. (2009) Zbl1171.34331MR2495851
- Diagana, T., N'Guérékata, G. M., 10.1080/00036810600708499, Appl. Anal. 85 (2006), 769-780. (2006) Zbl1103.34051MR2232421DOI10.1080/00036810600708499
- Ding, H.-S., Liang, J., N'Guérékata, G. M., Xiao, T. J., 10.1016/j.mcm.2006.07.006, Math. Comput. Modelling 45 (2007), 579-584. (2007) Zbl1165.34387MR2286345DOI10.1016/j.mcm.2006.07.006
- Enelund, M., Olsson, P., 10.1016/S0020-7683(97)00339-9, Int. J. Solids Struct. 36 (1999), 939-970. (1999) Zbl0936.74023MR1666097DOI10.1016/S0020-7683(97)00339-9
- Fink, A. M., 10.1007/BFb0070324, Lecture Notes in Mathematics 377, Springer, New York (1974). (1974) Zbl0325.34039MR0460799DOI10.1007/BFb0070324
- Henríquez, H. R., Andrade, B. de, Rabelo, M., 10.5402/2011/632687, ISRN Math. Anal. 2011 (2011), Article ID 632687, 21 pages. (2011) Zbl1242.34110MR2784886DOI10.5402/2011/632687
- Hong, J., Obaya, R., Sanz, A., 10.1016/S0362-546X(98)00296-X, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 45 (2001), 661-688. (2001) Zbl0996.34062MR1841201DOI10.1016/S0362-546X(98)00296-X
- Li, Y., Wang, C., 10.1186/1687-1847-2012-77, Adv. Difference Equ. 2012 (2012), Article ID 77, 24 pages. (2012) Zbl1294.34085MR2946504DOI10.1186/1687-1847-2012-77
- Liu, J., Zhang, C., 10.1186/1687-1847-2012-34, Adv. Difference Equ. 2012 (2012), Article ID 34, 14 pages. (2012) Zbl1291.34076MR2935667DOI10.1186/1687-1847-2012-34
- Liu, J., Zhang, C., 10.1186/1687-1847-2013-11, Adv. Difference Equ. 2013 (2013), 2013:11, 21 pages. (2013) MR3019356DOI10.1186/1687-1847-2013-11
- Liu, J., Zhang, C., 10.4067/s0719-06462013000100005, Cubo 15 (2013), 77-96. (2013) Zbl1292.34054MR3087596DOI10.4067/s0719-06462013000100005
- Liu, J., Zhang, C., doi.org/10.1155/2014/782018, Abstr. Appl. Anal. 2014 (2014), Article ID 782018, 11 pages. (2014) MR3251537DOIdoi.org/10.1155/2014/782018
- Pazy, A., 10.1007/978-1-4612-5561-1, Applied Mathematical Sciences 44, Springer, New York (1983). (1983) Zbl0516.47023MR0710486DOI10.1007/978-1-4612-5561-1
- Podlubny, I., Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering 198, Academic Press, San Diego (1999). (1999) Zbl0924.34008MR1658022
- Samoilenko, A. M., Perestyuk, N. A., 10.1142/9789812798664, World Scientific Series on Nonlinear Science. Series A. 14, World Scientific, Singapore (1995). (1995) Zbl0837.34003MR1355787DOI10.1142/9789812798664
- Stamov, G. T., 10.1007/978-3-642-27546-3, Lecture Notes in Mathematics 2047, Springer, Berlin (2012). (2012) Zbl1255.34001MR2934087DOI10.1007/978-3-642-27546-3
- Stamov, G. T., Alzabut, J. O., 10.1016/j.na.2009.10.042, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 2457-2464. (2010) Zbl1190.34067MR2577811DOI10.1016/j.na.2009.10.042
- Stamov, G. T., Stamova, I. M., 10.1080/14689367.2013.854737, Dyn. Syst. 29 (2014), 119-132. (2014) Zbl1320.34012MR3170642DOI10.1080/14689367.2013.854737
- Wang, J. R., Fečkan, M., Zhou, Y., 10.4310/DPDE.2011.v8.n4.a3, Dyn. Partial Differ. Equ. 8 (2011), 345-361. (2011) Zbl1264.34014MR2901608DOI10.4310/DPDE.2011.v8.n4.a3
- Zhang, C., 10.1006/jmaa.1994.1005, J. Math. Anal. Appl. 181 (1994), 62-76. (1994) Zbl0796.34029MR1257954DOI10.1006/jmaa.1994.1005
- Zhang, C., 10.1006/jmaa.1995.1189, J. Math. Anal. Appl. 192 (1995), 543-561. (1995) Zbl0826.34040MR1332227DOI10.1006/jmaa.1995.1189
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.