Elementary stochastic calculus for finance with infinitesimals
Commentationes Mathematicae Universitatis Carolinae (2017)
- Volume: 58, Issue: 1, page 101-124
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topWitzany, Jiří. "Elementary stochastic calculus for finance with infinitesimals." Commentationes Mathematicae Universitatis Carolinae 58.1 (2017): 101-124. <http://eudml.org/doc/287881>.
@article{Witzany2017,
abstract = {The concept of an equivalent martingale measure is of key importance for pricing of financial derivative contracts. The goal of the paper is to apply infinitesimals in the non-standard analysis set-up to provide an elementary construction of the equivalent martingale measure built on hyperfinite binomial trees with infinitesimal time steps.},
author = {Witzany, Jiří},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {equivalent martingale measure; option pricing; stochastic processes; non-standard analysis},
language = {eng},
number = {1},
pages = {101-124},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Elementary stochastic calculus for finance with infinitesimals},
url = {http://eudml.org/doc/287881},
volume = {58},
year = {2017},
}
TY - JOUR
AU - Witzany, Jiří
TI - Elementary stochastic calculus for finance with infinitesimals
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2017
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 58
IS - 1
SP - 101
EP - 124
AB - The concept of an equivalent martingale measure is of key importance for pricing of financial derivative contracts. The goal of the paper is to apply infinitesimals in the non-standard analysis set-up to provide an elementary construction of the equivalent martingale measure built on hyperfinite binomial trees with infinitesimal time steps.
LA - eng
KW - equivalent martingale measure; option pricing; stochastic processes; non-standard analysis
UR - http://eudml.org/doc/287881
ER -
References
top- Albeverio S., Fenstad J.E., Hoegh-Krohn R., Lindstrom T., Nonstadard Methods in Stochastic Analysis and Mathematical Physics, Dover Publications, 1986. MR0859372
- Anderson R.M., 10.1007/BF02756559, Israel Math. J. 25 (1976), 15–46. Zbl0327.60039MR0464380DOI10.1007/BF02756559
- Bacheier L., La Theorie de la Speculation, Annales de l'Ecole Normale Superieure, 3, Gauthier-Villars, Paris, 1900. MR1508978
- Berg I., Principles of Infinitesimal Stochastic and Financial Analysis, World Scientific, Singapore, 2000. Zbl0964.91024MR1789967
- Brown R., 10.1080/14786442808674769, Phil. Mag. 4 (1828), 161–173. DOI10.1080/14786442808674769
- Cox J., Ross S., Rubinstein M., 10.1016/0304-405X(79)90015-1, J. Financial Econom. 7 (1979), 229–263. Zbl1131.91333DOI10.1016/0304-405X(79)90015-1
- Cutland N., Kopp E., Willinger W., 10.1111/j.1467-9965.1991.tb00017.x, Mathematical Finance 1 (1991), no. 4, 1–38. Zbl0900.90104DOI10.1111/j.1467-9965.1991.tb00017.x
- Cutland N., Kopp E., Willinger W., 10.1080/17442509308833813, Stochastics Stochastics Rep. 42 (1993), 115–133. Zbl0808.90018MR1275815DOI10.1080/17442509308833813
- Cutland N., Kopp E., Willinger W., 10.1080/17442509508833970, Stochastics Stochastics Rep. 52 (1995), 173–192. Zbl0864.60039MR1381667DOI10.1080/17442509508833970
- Cutland N., Kopp E., Willinger W., Wyman M.C., Convergence of Snell envelopess and critical prices in the American put, Mathematics of Derivative Securitities (M.A.H. Dempster and S.R. Pliska, eds.), Cambridge University Press, Cambridge, 1997, pp. 126–140. MR1491372
- Cutland N., 10.1007/b76881, Lecture Notes in Mathematics, 1751, Springer, Berlin, 2000. Zbl0963.28015MR1810844DOI10.1007/b76881
- Einstein A., Investigations on the theory of the Brownian movement, R. Fürth (Ed.), Dover Publications, New York, 1956. Zbl0936.01034MR0077443
- Herzberg F.S., Stochastic Calculus with Infinitesimals, Springer, Heidelberg, 2013. Zbl1302.60006MR2986409
- Hull J., Options, Futures, and Other Derivatives, 8th edition, Prentice Hall, 2011. Zbl1087.91025
- Hurd A.E., Loeb P.A., An Introduction to Nonstandard Real Analysis, Academic Press, Orlando, FL, 1985. Zbl0583.26006MR0806135
- Kalina M., Probability in the alternative set theory, Comment. Math. Univ. Carolin. 30 (1989), no. 2, 347–356. Zbl0677.03039MR1014134
- Keisler J.H., An infinitesimal approach to stochastic analysis, Mem. Amer. Math. Soc. 297, 1984. Zbl0529.60062MR0732752
- Keisler J.H., Elementary Calculus - an Infinitesimal Approach, 2nd edition, University of Wisconsin - Creative Commons., 2000. Zbl0655.26002
- Kopp P.E., Hyperfinite Mathematical Finance, in Arkeryd et al. Nonstandard Analysis: Theory and Applications, Kluwer, Dordrecht, 1997. Zbl0952.91028MR1603237
- Lindstrom T., 10.1007/s11813-007-0004-7, Logic and Analysis 1 (2008), 91–129. Zbl1156.60035MR2403500DOI10.1007/s11813-007-0004-7
- Loeb P.A., 10.1090/S0002-9947-1975-0390154-8, Trans. Amer. Math. Soc. 211 (1975), 113–122. Zbl0312.28004MR0390154DOI10.1090/S0002-9947-1975-0390154-8
- Nelson A., 10.1090/S0002-9904-1977-14398-X, Bull. Amer. Math. Soc. 83 (1977), no. 6, 1165–1198. Zbl0373.02040MR0469763DOI10.1090/S0002-9904-1977-14398-X
- Nelson E., Radically Elementary Probability Theory, Princeton University Press, Princeton, NJ, 1987. Zbl0651.60001MR0906454
- Pudlák P., Sochor A., 10.2307/2274190, J. Symbolic Logic 49 (1984), 570–585. Zbl0578.03028MR0745386DOI10.2307/2274190
- Rebonato R., Volatility and Correlation: the Perfect Hedger and the Fox, 2nd edition, Wiley, 2004.
- Robinson A., Nonstandard analysis, Proc. Roy. Acad. Amsterdam Ser. A 64 (1961), 432–440. Zbl0424.01031MR0142464
- Shreve S., Stochastic Calculus for Finance II. Continuous Time Models, Springer, New York, 2004. Zbl1068.91041MR2057928
- Shreve S., Stochastic Calculus for Finance I. The Binomial Asset Pricing Model, Springer, New York, 2005. Zbl1068.91040MR2049045
- Vopěnka P., Mathematics in the Alternative Set Theory, Teubner, Leipzig, 1979. MR0581368
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.