Elementary stochastic calculus for finance with infinitesimals

Jiří Witzany

Commentationes Mathematicae Universitatis Carolinae (2017)

  • Volume: 58, Issue: 1, page 101-124
  • ISSN: 0010-2628

Abstract

top
The concept of an equivalent martingale measure is of key importance for pricing of financial derivative contracts. The goal of the paper is to apply infinitesimals in the non-standard analysis set-up to provide an elementary construction of the equivalent martingale measure built on hyperfinite binomial trees with infinitesimal time steps.

How to cite

top

Witzany, Jiří. "Elementary stochastic calculus for finance with infinitesimals." Commentationes Mathematicae Universitatis Carolinae 58.1 (2017): 101-124. <http://eudml.org/doc/287881>.

@article{Witzany2017,
abstract = {The concept of an equivalent martingale measure is of key importance for pricing of financial derivative contracts. The goal of the paper is to apply infinitesimals in the non-standard analysis set-up to provide an elementary construction of the equivalent martingale measure built on hyperfinite binomial trees with infinitesimal time steps.},
author = {Witzany, Jiří},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {equivalent martingale measure; option pricing; stochastic processes; non-standard analysis},
language = {eng},
number = {1},
pages = {101-124},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Elementary stochastic calculus for finance with infinitesimals},
url = {http://eudml.org/doc/287881},
volume = {58},
year = {2017},
}

TY - JOUR
AU - Witzany, Jiří
TI - Elementary stochastic calculus for finance with infinitesimals
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2017
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 58
IS - 1
SP - 101
EP - 124
AB - The concept of an equivalent martingale measure is of key importance for pricing of financial derivative contracts. The goal of the paper is to apply infinitesimals in the non-standard analysis set-up to provide an elementary construction of the equivalent martingale measure built on hyperfinite binomial trees with infinitesimal time steps.
LA - eng
KW - equivalent martingale measure; option pricing; stochastic processes; non-standard analysis
UR - http://eudml.org/doc/287881
ER -

References

top
  1. Albeverio S., Fenstad J.E., Hoegh-Krohn R., Lindstrom T., Nonstadard Methods in Stochastic Analysis and Mathematical Physics, Dover Publications, 1986. MR0859372
  2. Anderson R.M., 10.1007/BF02756559, Israel Math. J. 25 (1976), 15–46. Zbl0327.60039MR0464380DOI10.1007/BF02756559
  3. Bacheier L., La Theorie de la Speculation, Annales de l'Ecole Normale Superieure, 3, Gauthier-Villars, Paris, 1900. MR1508978
  4. Berg I., Principles of Infinitesimal Stochastic and Financial Analysis, World Scientific, Singapore, 2000. Zbl0964.91024MR1789967
  5. Brown R., 10.1080/14786442808674769, Phil. Mag. 4 (1828), 161–173. DOI10.1080/14786442808674769
  6. Cox J., Ross S., Rubinstein M., 10.1016/0304-405X(79)90015-1, J. Financial Econom. 7 (1979), 229–263. Zbl1131.91333DOI10.1016/0304-405X(79)90015-1
  7. Cutland N., Kopp E., Willinger W., 10.1111/j.1467-9965.1991.tb00017.x, Mathematical Finance 1 (1991), no. 4, 1–38. Zbl0900.90104DOI10.1111/j.1467-9965.1991.tb00017.x
  8. Cutland N., Kopp E., Willinger W., 10.1080/17442509308833813, Stochastics Stochastics Rep. 42 (1993), 115–133. Zbl0808.90018MR1275815DOI10.1080/17442509308833813
  9. Cutland N., Kopp E., Willinger W., 10.1080/17442509508833970, Stochastics Stochastics Rep. 52 (1995), 173–192. Zbl0864.60039MR1381667DOI10.1080/17442509508833970
  10. Cutland N., Kopp E., Willinger W., Wyman M.C., Convergence of Snell envelopess and critical prices in the American put, Mathematics of Derivative Securitities (M.A.H. Dempster and S.R. Pliska, eds.), Cambridge University Press, Cambridge, 1997, pp. 126–140. MR1491372
  11. Cutland N., 10.1007/b76881, Lecture Notes in Mathematics, 1751, Springer, Berlin, 2000. Zbl0963.28015MR1810844DOI10.1007/b76881
  12. Einstein A., Investigations on the theory of the Brownian movement, R. Fürth (Ed.), Dover Publications, New York, 1956. Zbl0936.01034MR0077443
  13. Herzberg F.S., Stochastic Calculus with Infinitesimals, Springer, Heidelberg, 2013. Zbl1302.60006MR2986409
  14. Hull J., Options, Futures, and Other Derivatives, 8th edition, Prentice Hall, 2011. Zbl1087.91025
  15. Hurd A.E., Loeb P.A., An Introduction to Nonstandard Real Analysis, Academic Press, Orlando, FL, 1985. Zbl0583.26006MR0806135
  16. Kalina M., Probability in the alternative set theory, Comment. Math. Univ. Carolin. 30 (1989), no. 2, 347–356. Zbl0677.03039MR1014134
  17. Keisler J.H., An infinitesimal approach to stochastic analysis, Mem. Amer. Math. Soc. 297, 1984. Zbl0529.60062MR0732752
  18. Keisler J.H., Elementary Calculus - an Infinitesimal Approach, 2nd edition, University of Wisconsin - Creative Commons., 2000. Zbl0655.26002
  19. Kopp P.E., Hyperfinite Mathematical Finance, in Arkeryd et al. Nonstandard Analysis: Theory and Applications, Kluwer, Dordrecht, 1997. Zbl0952.91028MR1603237
  20. Lindstrom T., 10.1007/s11813-007-0004-7, Logic and Analysis 1 (2008), 91–129. Zbl1156.60035MR2403500DOI10.1007/s11813-007-0004-7
  21. Loeb P.A., 10.1090/S0002-9947-1975-0390154-8, Trans. Amer. Math. Soc. 211 (1975), 113–122. Zbl0312.28004MR0390154DOI10.1090/S0002-9947-1975-0390154-8
  22. Nelson A., 10.1090/S0002-9904-1977-14398-X, Bull. Amer. Math. Soc. 83 (1977), no. 6, 1165–1198. Zbl0373.02040MR0469763DOI10.1090/S0002-9904-1977-14398-X
  23. Nelson E., Radically Elementary Probability Theory, Princeton University Press, Princeton, NJ, 1987. Zbl0651.60001MR0906454
  24. Pudlák P., Sochor A., 10.2307/2274190, J. Symbolic Logic 49 (1984), 570–585. Zbl0578.03028MR0745386DOI10.2307/2274190
  25. Rebonato R., Volatility and Correlation: the Perfect Hedger and the Fox, 2nd edition, Wiley, 2004. 
  26. Robinson A., Nonstandard analysis, Proc. Roy. Acad. Amsterdam Ser. A 64 (1961), 432–440. Zbl0424.01031MR0142464
  27. Shreve S., Stochastic Calculus for Finance II. Continuous Time Models, Springer, New York, 2004. Zbl1068.91041MR2057928
  28. Shreve S., Stochastic Calculus for Finance I. The Binomial Asset Pricing Model, Springer, New York, 2005. Zbl1068.91040MR2049045
  29. Vopěnka P., Mathematics in the Alternative Set Theory, Teubner, Leipzig, 1979. MR0581368

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.