Geometry of the free-sliding Bernoulli beam
Giovanni Moreno; Monika Ewa Stypa
Communications in Mathematics (2016)
- Volume: 24, Issue: 2, page 153-171
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topMoreno, Giovanni, and Stypa, Monika Ewa. "Geometry of the free-sliding Bernoulli beam." Communications in Mathematics 24.2 (2016): 153-171. <http://eudml.org/doc/287882>.
@article{Moreno2016,
abstract = {If a variational problem comes with no boundary conditions prescribed beforehand, and yet these arise as a consequence of the variation process itself, we speak of the free boundary values variational problem. Such is, for instance, the problem of finding the shortest curve whose endpoints can slide along two prescribed curves. There exists a rigorous geometric way to formulate this sort of problems on smooth manifolds with boundary, which we review here in a friendly self-contained way. As an application, we study the particular free boundary values variational problem of the free-sliding Bernoulli beam. This paper is dedicated to the memory of prof. Gennadi Sardanashvily.},
author = {Moreno, Giovanni, Stypa, Monika Ewa},
journal = {Communications in Mathematics},
keywords = {Global Analysis; Calculus of Variations; Free Boundary Problems; Jet Spaces; Bernoulli Beam; global analysis; calculus of variations; free boundary problems; jet spaces; Bernoulli beam},
language = {eng},
number = {2},
pages = {153-171},
publisher = {University of Ostrava},
title = {Geometry of the free-sliding Bernoulli beam},
url = {http://eudml.org/doc/287882},
volume = {24},
year = {2016},
}
TY - JOUR
AU - Moreno, Giovanni
AU - Stypa, Monika Ewa
TI - Geometry of the free-sliding Bernoulli beam
JO - Communications in Mathematics
PY - 2016
PB - University of Ostrava
VL - 24
IS - 2
SP - 153
EP - 171
AB - If a variational problem comes with no boundary conditions prescribed beforehand, and yet these arise as a consequence of the variation process itself, we speak of the free boundary values variational problem. Such is, for instance, the problem of finding the shortest curve whose endpoints can slide along two prescribed curves. There exists a rigorous geometric way to formulate this sort of problems on smooth manifolds with boundary, which we review here in a friendly self-contained way. As an application, we study the particular free boundary values variational problem of the free-sliding Bernoulli beam. This paper is dedicated to the memory of prof. Gennadi Sardanashvily.
LA - eng
KW - Global Analysis; Calculus of Variations; Free Boundary Problems; Jet Spaces; Bernoulli Beam; global analysis; calculus of variations; free boundary problems; jet spaces; Bernoulli beam
UR - http://eudml.org/doc/287882
ER -
References
top- Duchamp, I. M. Anderson and T., 10.2307/2374195, Amer. J. Math., 102, 5, 1980, 781-868, ISSN 0002-9327. DOI 10.2307/2374195. (1980) MR0590637DOI10.2307/2374195
- Bocharov, A. V., Chetverikov, V. N., Duzhin, S. V., Khor'kova, N. G., Krasil'shchik, I. S., Samokhin, A. V., Torkhov, Yu. N., Verbovetsky, A. M., Vinogradov, A. M., Symmetries and conservation laws for differential equations of mathematical physics, Translations of Mathematical Monographs, 182, 1999, American Mathematical Society, Providence, RI, ISBN 0-8218-0958-X. Edited and with a preface by Krasil'shchik and Vinogradov, translated from 1997 Russian original by Verbovetsky and Krasil'shchik. (1999) MR1670044
- Dedecker, P., Calcul des variations, formes différentielles et champs géodésiques, Géométrie différentielle. Colloques Internationaux du Centre National de la Recherche Scientifique, Strasbourg, 1953, 17-34, Centre National de la Recherche Scientifique, Paris, (1953) Zbl0052.32003MR0062964
- Gel'fand, I. M., Dikiĭ, L. A., The calculus of jets and nonlinear Hamiltonian systems, Funkcional. Anal. i Priložen., 12, 2, 1978, 8-23, ISSN 0374-1990. (1978) MR0501129
- Giaquinta, M., Hildebrandt, S., Calculus of variations. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 310, 1996, Springer-Verlag, Berlin, ISBN 3-540-50625-X. The Lagrangian formalism. (1996) MR1385926
- Janet, M., Leçons sur les Systèmes d'Équations aux Dérivées Partielles, 1929, Gauthier-Villars, (1929)
- Krupka, D., Of the structure of the Euler mapping, Arch. Math., 10, 1, 1974, 55-61, ISSN 0044-8753. (1974) MR0394755
- Krupka, D., Moreno, G., Urban, Z., Voln{á}, J., 10.1142/S0219887815500577, Int. J. Geom. Methods Mod. Phys., 15, 5, 2015, 1550057. ISSN 0219-8878. DOI 10.1142/S0219887815500577. (2015) Zbl1322.58013MR3349926DOI10.1142/S0219887815500577
- Lánczos, C., The variational principles of mechanics, 4, 1970, University of Toronto Press, Toronto, Ont., Fourth Ed.. (1970) Zbl0257.70001MR0431821
- Love, A. E. H., A treatise on the Mathematical Theory of Elasticity, 1944, Dover Publications, New York, Fourth Ed.. (1944) Zbl0063.03651MR0010851
- Moreno, G., Condizioni di trasversalitá nel calcolo secondario, 2007, PhD thesis, University of Naples ``Federico II'' (2007). (2007)
- Moreno, G., A C-spectral sequence associated with free boundary variational problems, Geometry, integrability and quantization, 2010, 146-156, Avangard Prima, Sofia, (2010) MR2757930
- Moreno, G., 10.2478/s11533-013-0292-y, Central European Journal of Mathematics, 11, 11, 2013, 1960-1981, DOI 10.2478/s11533-013-0292-y. (2013) Zbl1292.35011MR3092791DOI10.2478/s11533-013-0292-y
- Moreno, G., Stypa, M. E., 10.1515/ms-2015-0105, Math. Slovaca, 65, 6, 2015, 1531-1556, ISSN 0139-9918. DOI 10.1515/ms-2015-0105. (2015) MR3458999DOI10.1515/ms-2015-0105
- Sardanashvily, G. A., Gauge theory in jet manifolds, 1993, Hadronic Press Inc., Palm Harbor, FL, ISBN 0-911767-60-6.. (1993) Zbl0811.58004MR1262598
- Saunders, D. J., 10.1017/CBO9780511526411, 142, 1989, Cambridge University Press, Cambridge, ISBN 0-521-36948-7. DOI 10.1017/CBO9780511526411. (1989) Zbl0665.58002MR0989588DOI10.1017/CBO9780511526411
- Takens, F., 10.1007/BFb0085377, Lect. Notes Math., 597, 1977, 581-604, Springer-Verlag, (1977) Zbl0368.49019MR0650304DOI10.1007/BFb0085377
- Tsujishita, T., On variation bicomplexes associated to differential equations, Osaka J. Math., 19, 2, 1982, 311-363, ISSN 0030-6126. (1982) Zbl0524.58041MR0667492
- Tulczyjew, W. M., Sur la différentielle de Lagrange, C. R. Acad. Sci. Paris Sér. A, 280, 1975, 1295-1298, (1975) Zbl0314.58018MR0377987
- Brunt, B. van, The calculus of variations, 2004, Springer-Verlag, New York, ISBN 0-387-40247-0. (2004) MR2004181
- Vinogradov, A. M., 10.1016/0022-247X(84)90071-4, J. Math. Anal. Appl., 100, 1, 1984, 1-40, ISSN 0022-247X. (1984) MR0739951DOI10.1016/0022-247X(84)90071-4
- Vinogradov, A. M., 10.1016/0022-247X(84)90072-6, J. Math. Anal. Appl., 100, 1, 1984, 41-129, ISSN 0022-247X. (1984) MR0739952DOI10.1016/0022-247X(84)90072-6
- Vinogradov, A. M., Moreno, G., 10.1134/S1064562407020081, Dokl. Akad. Nauk, 413, 2, 2007, 154-157, ISSN 0869-5652. DOI 10.1134/S1064562407020081. (2007) MR2456137DOI10.1134/S1064562407020081
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.