-Ricci Solitons on -Einstein -Manifolds
Shyamal Kumar Hui; Debabrata Chakraborty
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2016)
- Volume: 55, Issue: 2, page 101-109
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topHui, Shyamal Kumar, and Chakraborty, Debabrata. "$\eta $-Ricci Solitons on $\eta $-Einstein $(LCS)_n$-Manifolds." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 55.2 (2016): 101-109. <http://eudml.org/doc/287896>.
@article{Hui2016,
abstract = {The object of the present paper is to study $\eta $-Ricci solitons on $\eta $-Einstein $(LCS)_n$-manifolds. It is shown that if $\xi $ is a recurrent torse forming $\eta $-Ricci soliton on an $\eta $-Einstein $(LCS)_n$-manifold then $\xi $ is (i) concurrent and (ii) Killing vector field.},
author = {Hui, Shyamal Kumar, Chakraborty, Debabrata},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {$\eta $-Ricci soliton; $\eta $-Einstein manifold; $(LCS)_n$-manifold},
language = {eng},
number = {2},
pages = {101-109},
publisher = {Palacký University Olomouc},
title = {$\eta $-Ricci Solitons on $\eta $-Einstein $(LCS)_n$-Manifolds},
url = {http://eudml.org/doc/287896},
volume = {55},
year = {2016},
}
TY - JOUR
AU - Hui, Shyamal Kumar
AU - Chakraborty, Debabrata
TI - $\eta $-Ricci Solitons on $\eta $-Einstein $(LCS)_n$-Manifolds
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2016
PB - Palacký University Olomouc
VL - 55
IS - 2
SP - 101
EP - 109
AB - The object of the present paper is to study $\eta $-Ricci solitons on $\eta $-Einstein $(LCS)_n$-manifolds. It is shown that if $\xi $ is a recurrent torse forming $\eta $-Ricci soliton on an $\eta $-Einstein $(LCS)_n$-manifold then $\xi $ is (i) concurrent and (ii) Killing vector field.
LA - eng
KW - $\eta $-Ricci soliton; $\eta $-Einstein manifold; $(LCS)_n$-manifold
UR - http://eudml.org/doc/287896
ER -
References
top- Ashoka, S. R., Bagewadi, C. S., Ingalahalli, G., Certain results on Ricci solitons in -Sasakian manifolds, . Geometry 2013, ID 573925 (2013), 1–4. (2013) Zbl1314.53116MR3100666
- Ashoka, S. R., Bagewadi, C. S., Ingalahalli, G., A geometry on Ricci solitons in -manifolds, . Diff. Geom.-Dynamical Systems 16 (2014), 50–62. (2014) Zbl1331.53045MR3226604
- Atceken, M., On geometry of submanifolds of -manifolds, . International Journal of Mathematics and Mathematical Sciences 2012, ID 304647 (2014), 1–11. (2014) MR2888754
- Atceken, M., Hui, S. K., 10.1007/s10587-013-0012-6, . Czechoslovak Math. J. 63 (2013), 177–190. (2013) MR3035505DOI10.1007/s10587-013-0012-6
- Bagewadi, C. S., Ingalahalli, G., Ricci solitons in Lorentzian-Sasakian manifolds, . Acta Math. Acad. Paeda. Nyire. 28 (2012), 59–68. (2012) MR2942704
- Bejan, C. L., Crasmareanu, M., 10.5486/PMD.2011.4797, . Publ. Math. Debrecen 78 (2011), 235–243. (2011) Zbl1274.53097MR2777674DOI10.5486/PMD.2011.4797
- Blaga, A. M., -Ricci solitons on para-kenmotsu manifolds, . Balkan J. Geom. Appl. 20 (2015), 1–13. (2015) Zbl1334.53017MR3367062
- Blaga, A. M., Crasmareanu, M., Torse forming -Ricci solitons in almost para-contact -Einstein geometry, . Filomat, (to appear).
- Chandra, S., Hui, S. K., Shaikh, A. A., 10.4134/CKMS.2015.30.2.123, . Commun. Korean Math. Soc. 30 (2015), 123–130. (2015) Zbl1338.53055MR3346486DOI10.4134/CKMS.2015.30.2.123
- Chen, B. Y., Deshmukh, S., Geometry of compact shrinking Ricci solitons, . Balkan J. Geom. Appl. 19 (2014), 13–21. (2014) Zbl1316.53052MR3223305
- Chen, B. Y., Deshmukh, S., Ricci solitons and concurrent vector fields, . arXiv:1407.2790 [math.DG] 2014 (2014), 1–12. (2014) MR3367063
- Cho, J. T., Kimura, M., 10.2748/tmj/1245849443, . Tohoku Math. J. 61 (2009), 205–212. (2009) Zbl1172.53021MR2541405DOI10.2748/tmj/1245849443
- Deshmukh, S., Al-Sodais, H., Alodan, H., A note on Ricci solitons, . Balkan J. Geom. Appl. 16 (2011), 48–55. (2011) Zbl1220.53060MR2785715
- Hamilton, R. S., 10.4310/jdg/1214436922, . J. Differential Geom. 17, 2 (1982), 255–306. (1982) MR0664497DOI10.4310/jdg/1214436922
- Hamilton, R. S., 10.1090/conm/071/954419, . Contemporary Mathematics 71 (1988), 237–261. (1988) Zbl0663.53031MR0954419DOI10.1090/conm/071/954419
- Hinterleitner, I., Kiosak, V., -vektor fields in Riemannian spaces, . Arch. Math. 5 (2008), 385–390. (2008) MR2501574
- Hinterleitner, I., Kiosak, V., -vector fields on conformally flat spaces, . AIP Conf. Proc. 1191 (2009), 98–103. (2009)
- Hui, S. K., 10.5666/KMJ.2013.53.2.285, . Kyungpook Math. J. 53 (2013), 285–294. (2013) MR3078089DOI10.5666/KMJ.2013.53.2.285
- Hui, S. K., Atceken, M., Contact warped product semi-slant submanifolds of -manifolds, . Acta Univ. Sapientiae Mathematica 3, 2 (2011), 212–224. (2011) Zbl1260.53081MR2915836
- Hui, S. K., Chakraborty, D., Some types of Ricci solitons on -manifolds, . J. Math. Sciences: Advances and Applications 37 (2016), 1–17. (2016)
- Hui, S. K., Lemence, R. S., Chakraborty, D., Ricci solitons on three dimensional generalized Sasakian-space-forms, . Tensor, N. S. 76 (2015). (2015)
- Ingalahalli, G., Bagewadi, C. S., 10.5402/2012/421384, . ISRN Geometry 2012, ID 421384 (2012), 1–13. (2012) Zbl1247.53052MR3100666DOI10.5402/2012/421384
- Matsumoto, K., On Lorentzian almost paracontact manifolds, . Bull. Yamagata Univ. Nat. Sci. 12 (1989), 151–156. (1989) MR0994289
- Mihai, I., Rosca, R., On Lorentzian para-Sasakian manifolds, . In: Classical Anal., World Sci. Publ., Singapore, 1992, 155–169. (1992) MR1173650
- Mikeš, J., Rachůnek, L., Torse forming vector fields in T-semisymmetric Riemannian spaces, . In: Steps in Diff. Geom., Proc. of the Colloquium on Diff. Geom., Univ. Debrecen, Debrecen, Hungary, 2000, 219–229. (2000) MR1859300
- Mikeš, J., Differential Geometry of Special Mappings, . Palacky Univ. Press, Olomouc, 2015. (2015) Zbl1337.53001MR3442960
- Nagaraja, H. G., Premlatta, C. R., Ricci solitons in Kenmotsu manifolds, . J. Math. Analysis 3 (2012), 18–24. (2012) MR2966274
- Narain, D., Yadav, S., On weak concircular symmetries of -manifolds, . Global J. Sci. Frontier Research 12 (2012), 85–94. (2012) MR2850604
- O’Neill, B., Semi Riemannian geometry with applications to relativity, . Academic Press, New York, 1983. (1983) Zbl0531.53051MR0719023
- Perelman, G., The entropy formula for the Ricci flow and its geometric applications, . arXiv:math/0211159 [Math.DG] 2002 (2002), 1–39. (2002) Zbl1130.53001
- Perelman, G., Ricci flow with surgery on three manifolds, . arXiv:math/0303109 [Math.DG] 2003 (2013), 1–22. (2013)
- Prakasha, D. G., On Ricci -recurrent -manifolds, . Acta Univ. Apulensis 24 (2010), 109–118. (2010) Zbl1224.53061MR2663680
- Shaikh, A. A., On Lorentzian almost paracontact manifolds with a structure of the concircular type, . Kyungpook Math. J. 43 (2003), 305–314. (2003) Zbl1054.53056MR1983436
- Shaikh, A. A., 10.4134/JKMS.2009.46.3.449, . J. Korean Math. Soc. 46 (2009), 449–461. (2009) Zbl1193.53094MR2515129DOI10.4134/JKMS.2009.46.3.449
- Shaikh, A. A., Ahmad, H., 10.21099/tkbjm/1407938669, . Tsukuba J. Math. 38 (2014), 1–24. (2014) Zbl1296.53056MR3261910DOI10.21099/tkbjm/1407938669
- Shaikh, A. A., Baishya, K. K., 10.3844/jmssp.2005.129.132, . J. Math. Stat. 1 (2005), 129–132. (2005) Zbl1142.53326MR2197611DOI10.3844/jmssp.2005.129.132
- Shaikh, A. A., Baishya, K. K., 10.3844/ajassp.2006.1790.1794, . American J. Appl. Sci. 3, 4 (2006), 1790–1794. (2006) MR2220732DOI10.3844/ajassp.2006.1790.1794
- Shaikh, A. A., Basu, T., Eyasmin, S., On locally -symmetric -manifolds, . Int. J. Pure Appl. Math. 41, 8 (2007), 1161–1170. (2007) Zbl1136.53030MR2384602
- Shaikh, A. A., Basu, T., Eyasmin, S., On the existence of -recurrent -manifolds, . Extracta Mathematicae 23, 1 (2008), 71–83. (2008) MR2449997
- Shaikh, A. A., Binh, T. Q., On weakly symmetric -manifolds, . J. Adv. Math. Studies 2 (2009), 75–90. (2009) Zbl1180.53033MR2583641
- Shaikh, A. A., Hui, S. K., On generalized -recurrent -manifolds, . AIP Conf. Proc. 1309 (2010), 419–429. (2010)
- Shaikh, A. A., Matsuyama, Y., Hui, S. K., 10.1016/j.joems.2015.05.008, . J. Egyptian Math. Soc. 24 (2016), 263–269. (2016) MR3488908DOI10.1016/j.joems.2015.05.008
- Sharma, R., Second order parallel tensor in real and complex space forms, . International J. Math. and Math. Sci. 12 (1989), 787–790. (1989) Zbl0696.53012MR1024982
- Sharma, R., 10.1007/s00022-008-2004-5, . J. of Geom. 89 (2008), 138–147. (2008) Zbl1175.53060MR2457028DOI10.1007/s00022-008-2004-5
- Tripathi, M. M., Ricci solitons in contact metric manifolds, . arxiv:0801.4221 [Math.DG] 2008 (2008), 1–9. (2008)
- Yano, K., 10.3792/pia/1195579139, . Proc. Imp. Acad. Tokyo 16 (1940), 195–200. (1940) MR0003113DOI10.3792/pia/1195579139
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.