η -Ricci Solitons on η -Einstein ( L C S ) n -Manifolds

Shyamal Kumar Hui; Debabrata Chakraborty

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2016)

  • Volume: 55, Issue: 2, page 101-109
  • ISSN: 0231-9721

Abstract

top
The object of the present paper is to study η -Ricci solitons on η -Einstein ( L C S ) n -manifolds. It is shown that if ξ is a recurrent torse forming η -Ricci soliton on an η -Einstein ( L C S ) n -manifold then ξ is (i) concurrent and (ii) Killing vector field.

How to cite

top

Hui, Shyamal Kumar, and Chakraborty, Debabrata. "$\eta $-Ricci Solitons on $\eta $-Einstein $(LCS)_n$-Manifolds." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 55.2 (2016): 101-109. <http://eudml.org/doc/287896>.

@article{Hui2016,
abstract = {The object of the present paper is to study $\eta $-Ricci solitons on $\eta $-Einstein $(LCS)_n$-manifolds. It is shown that if $\xi $ is a recurrent torse forming $\eta $-Ricci soliton on an $\eta $-Einstein $(LCS)_n$-manifold then $\xi $ is (i) concurrent and (ii) Killing vector field.},
author = {Hui, Shyamal Kumar, Chakraborty, Debabrata},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {$\eta $-Ricci soliton; $\eta $-Einstein manifold; $(LCS)_n$-manifold},
language = {eng},
number = {2},
pages = {101-109},
publisher = {Palacký University Olomouc},
title = {$\eta $-Ricci Solitons on $\eta $-Einstein $(LCS)_n$-Manifolds},
url = {http://eudml.org/doc/287896},
volume = {55},
year = {2016},
}

TY - JOUR
AU - Hui, Shyamal Kumar
AU - Chakraborty, Debabrata
TI - $\eta $-Ricci Solitons on $\eta $-Einstein $(LCS)_n$-Manifolds
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2016
PB - Palacký University Olomouc
VL - 55
IS - 2
SP - 101
EP - 109
AB - The object of the present paper is to study $\eta $-Ricci solitons on $\eta $-Einstein $(LCS)_n$-manifolds. It is shown that if $\xi $ is a recurrent torse forming $\eta $-Ricci soliton on an $\eta $-Einstein $(LCS)_n$-manifold then $\xi $ is (i) concurrent and (ii) Killing vector field.
LA - eng
KW - $\eta $-Ricci soliton; $\eta $-Einstein manifold; $(LCS)_n$-manifold
UR - http://eudml.org/doc/287896
ER -

References

top
  1. Ashoka, S. R., Bagewadi, C. S., Ingalahalli, G., Certain results on Ricci solitons in α -Sasakian manifolds, . Geometry 2013, ID 573925 (2013), 1–4. (2013) Zbl1314.53116MR3100666
  2. Ashoka, S. R., Bagewadi, C. S., Ingalahalli, G., A geometry on Ricci solitons in ( L C S ) n -manifolds, . Diff. Geom.-Dynamical Systems 16 (2014), 50–62. (2014) Zbl1331.53045MR3226604
  3. Atceken, M., On geometry of submanifolds of ( L C S ) n -manifolds, . International Journal of Mathematics and Mathematical Sciences 2012, ID 304647 (2014), 1–11. (2014) MR2888754
  4. Atceken, M., Hui, S. K., 10.1007/s10587-013-0012-6, . Czechoslovak Math. J. 63 (2013), 177–190. (2013) MR3035505DOI10.1007/s10587-013-0012-6
  5. Bagewadi, C. S., Ingalahalli, G., Ricci solitons in Lorentzian-Sasakian manifolds, . Acta Math. Acad. Paeda. Nyire. 28 (2012), 59–68. (2012) MR2942704
  6. Bejan, C. L., Crasmareanu, M., 10.5486/PMD.2011.4797, . Publ. Math. Debrecen 78 (2011), 235–243. (2011) Zbl1274.53097MR2777674DOI10.5486/PMD.2011.4797
  7. Blaga, A. M., η -Ricci solitons on para-kenmotsu manifolds, . Balkan J. Geom. Appl. 20 (2015), 1–13. (2015) Zbl1334.53017MR3367062
  8. Blaga, A. M., Crasmareanu, M., Torse forming η -Ricci solitons in almost para-contact η -Einstein geometry, . Filomat, (to appear). 
  9. Chandra, S., Hui, S. K., Shaikh, A. A., 10.4134/CKMS.2015.30.2.123, . Commun. Korean Math. Soc. 30 (2015), 123–130. (2015) Zbl1338.53055MR3346486DOI10.4134/CKMS.2015.30.2.123
  10. Chen, B. Y., Deshmukh, S., Geometry of compact shrinking Ricci solitons, . Balkan J. Geom. Appl. 19 (2014), 13–21. (2014) Zbl1316.53052MR3223305
  11. Chen, B. Y., Deshmukh, S., Ricci solitons and concurrent vector fields, . arXiv:1407.2790 [math.DG] 2014 (2014), 1–12. (2014) MR3367063
  12. Cho, J. T., Kimura, M., 10.2748/tmj/1245849443, . Tohoku Math. J. 61 (2009), 205–212. (2009) Zbl1172.53021MR2541405DOI10.2748/tmj/1245849443
  13. Deshmukh, S., Al-Sodais, H., Alodan, H., A note on Ricci solitons, . Balkan J. Geom. Appl. 16 (2011), 48–55. (2011) Zbl1220.53060MR2785715
  14. Hamilton, R. S., 10.4310/jdg/1214436922, . J. Differential Geom. 17, 2 (1982), 255–306. (1982) MR0664497DOI10.4310/jdg/1214436922
  15. Hamilton, R. S., 10.1090/conm/071/954419, . Contemporary Mathematics 71 (1988), 237–261. (1988) Zbl0663.53031MR0954419DOI10.1090/conm/071/954419
  16. Hinterleitner, I., Kiosak, V., ϕ ( R i c ) -vektor fields in Riemannian spaces, . Arch. Math. 5 (2008), 385–390. (2008) MR2501574
  17. Hinterleitner, I., Kiosak, V., ϕ ( R i c ) -vector fields on conformally flat spaces, . AIP Conf. Proc. 1191 (2009), 98–103. (2009) 
  18. Hui, S. K., 10.5666/KMJ.2013.53.2.285, . Kyungpook Math. J. 53 (2013), 285–294. (2013) MR3078089DOI10.5666/KMJ.2013.53.2.285
  19. Hui, S. K., Atceken, M., Contact warped product semi-slant submanifolds of ( L C S ) n -manifolds, . Acta Univ. Sapientiae Mathematica 3, 2 (2011), 212–224. (2011) Zbl1260.53081MR2915836
  20. Hui, S. K., Chakraborty, D., Some types of Ricci solitons on ( L C S ) n -manifolds, . J. Math. Sciences: Advances and Applications 37 (2016), 1–17. (2016) 
  21. Hui, S. K., Lemence, R. S., Chakraborty, D., Ricci solitons on three dimensional generalized Sasakian-space-forms, . Tensor, N. S. 76 (2015). (2015) 
  22. Ingalahalli, G., Bagewadi, C. S., 10.5402/2012/421384, . ISRN Geometry 2012, ID 421384 (2012), 1–13. (2012) Zbl1247.53052MR3100666DOI10.5402/2012/421384
  23. Matsumoto, K., On Lorentzian almost paracontact manifolds, . Bull. Yamagata Univ. Nat. Sci. 12 (1989), 151–156. (1989) MR0994289
  24. Mihai, I., Rosca, R., On Lorentzian para-Sasakian manifolds, . In: Classical Anal., World Sci. Publ., Singapore, 1992, 155–169. (1992) MR1173650
  25. Mikeš, J., Rachůnek, L., Torse forming vector fields in T-semisymmetric Riemannian spaces, . In: Steps in Diff. Geom., Proc. of the Colloquium on Diff. Geom., Univ. Debrecen, Debrecen, Hungary, 2000, 219–229. (2000) MR1859300
  26. Mikeš, J., Differential Geometry of Special Mappings, . Palacky Univ. Press, Olomouc, 2015. (2015) Zbl1337.53001MR3442960
  27. Nagaraja, H. G., Premlatta, C. R., Ricci solitons in Kenmotsu manifolds, . J. Math. Analysis 3 (2012), 18–24. (2012) MR2966274
  28. Narain, D., Yadav, S., On weak concircular symmetries of ( L C S ) 2 n + 1 -manifolds, . Global J. Sci. Frontier Research 12 (2012), 85–94. (2012) MR2850604
  29. O’Neill, B., Semi Riemannian geometry with applications to relativity, . Academic Press, New York, 1983. (1983) Zbl0531.53051MR0719023
  30. Perelman, G., The entropy formula for the Ricci flow and its geometric applications, . arXiv:math/0211159 [Math.DG] 2002 (2002), 1–39. (2002) Zbl1130.53001
  31. Perelman, G., Ricci flow with surgery on three manifolds, . arXiv:math/0303109 [Math.DG] 2003 (2013), 1–22. (2013) 
  32. Prakasha, D. G., On Ricci η -recurrent ( L C S ) n -manifolds, . Acta Univ. Apulensis 24 (2010), 109–118. (2010) Zbl1224.53061MR2663680
  33. Shaikh, A. A., On Lorentzian almost paracontact manifolds with a structure of the concircular type, . Kyungpook Math. J. 43 (2003), 305–314. (2003) Zbl1054.53056MR1983436
  34. Shaikh, A. A., 10.4134/JKMS.2009.46.3.449, . J. Korean Math. Soc. 46 (2009), 449–461. (2009) Zbl1193.53094MR2515129DOI10.4134/JKMS.2009.46.3.449
  35. Shaikh, A. A., Ahmad, H., 10.21099/tkbjm/1407938669, . Tsukuba J. Math. 38 (2014), 1–24. (2014) Zbl1296.53056MR3261910DOI10.21099/tkbjm/1407938669
  36. Shaikh, A. A., Baishya, K. K., 10.3844/jmssp.2005.129.132, . J. Math. Stat. 1 (2005), 129–132. (2005) Zbl1142.53326MR2197611DOI10.3844/jmssp.2005.129.132
  37. Shaikh, A. A., Baishya, K. K., 10.3844/ajassp.2006.1790.1794, . American J. Appl. Sci. 3, 4 (2006), 1790–1794. (2006) MR2220732DOI10.3844/ajassp.2006.1790.1794
  38. Shaikh, A. A., Basu, T., Eyasmin, S., On locally φ -symmetric ( L C S ) n -manifolds, . Int. J. Pure Appl. Math. 41, 8 (2007), 1161–1170. (2007) Zbl1136.53030MR2384602
  39. Shaikh, A. A., Basu, T., Eyasmin, S., On the existence of φ -recurrent ( L C S ) n -manifolds, . Extracta Mathematicae 23, 1 (2008), 71–83. (2008) MR2449997
  40. Shaikh, A. A., Binh, T. Q., On weakly symmetric ( L C S ) n -manifolds, . J. Adv. Math. Studies 2 (2009), 75–90. (2009) Zbl1180.53033MR2583641
  41. Shaikh, A. A., Hui, S. K., On generalized φ -recurrent ( L C S ) n -manifolds, . AIP Conf. Proc. 1309 (2010), 419–429. (2010) 
  42. Shaikh, A. A., Matsuyama, Y., Hui, S. K., 10.1016/j.joems.2015.05.008, . J. Egyptian Math. Soc. 24 (2016), 263–269. (2016) MR3488908DOI10.1016/j.joems.2015.05.008
  43. Sharma, R., Second order parallel tensor in real and complex space forms, . International J. Math. and Math. Sci. 12 (1989), 787–790. (1989) Zbl0696.53012MR1024982
  44. Sharma, R., 10.1007/s00022-008-2004-5, . J. of Geom. 89 (2008), 138–147. (2008) Zbl1175.53060MR2457028DOI10.1007/s00022-008-2004-5
  45. Tripathi, M. M., Ricci solitons in contact metric manifolds, . arxiv:0801.4221 [Math.DG] 2008 (2008), 1–9. (2008) 
  46. Yano, K., 10.3792/pia/1195579139, . Proc. Imp. Acad. Tokyo 16 (1940), 195–200. (1940) MR0003113DOI10.3792/pia/1195579139

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.