Practical Ulam-Hyers-Rassias stability for nonlinear equations
Mathematica Bohemica (2017)
- Volume: 142, Issue: 1, page 47-56
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topWang, Jin Rong, and Fečkan, Michal. "Practical Ulam-Hyers-Rassias stability for nonlinear equations." Mathematica Bohemica 142.1 (2017): 47-56. <http://eudml.org/doc/287897>.
@article{Wang2017,
abstract = {In this paper, we offer a new stability concept, practical Ulam-Hyers-Rassias stability, for nonlinear equations in Banach spaces, which consists in a restriction of Ulam-Hyers-Rassias stability to bounded subsets. We derive some interesting sufficient conditions on practical Ulam-Hyers-Rassias stability from a nonlinear functional analysis point of view. Our method is based on solving nonlinear equations via homotopy method together with Bihari inequality result. Then we consider nonlinear equations with surjective asymptotics at infinity. Moore-Penrose inverses are used for equations defined on Hilbert spaces. Specific practical Ulam-Hyers-Rassias results are derived for finite-dimensional equations. Finally, two examples illustrate our theoretical results.},
author = {Wang, Jin Rong, Fečkan, Michal},
journal = {Mathematica Bohemica},
keywords = {practical Ulam-Hyers-Rassias stability; nonlinear equation},
language = {eng},
number = {1},
pages = {47-56},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Practical Ulam-Hyers-Rassias stability for nonlinear equations},
url = {http://eudml.org/doc/287897},
volume = {142},
year = {2017},
}
TY - JOUR
AU - Wang, Jin Rong
AU - Fečkan, Michal
TI - Practical Ulam-Hyers-Rassias stability for nonlinear equations
JO - Mathematica Bohemica
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 142
IS - 1
SP - 47
EP - 56
AB - In this paper, we offer a new stability concept, practical Ulam-Hyers-Rassias stability, for nonlinear equations in Banach spaces, which consists in a restriction of Ulam-Hyers-Rassias stability to bounded subsets. We derive some interesting sufficient conditions on practical Ulam-Hyers-Rassias stability from a nonlinear functional analysis point of view. Our method is based on solving nonlinear equations via homotopy method together with Bihari inequality result. Then we consider nonlinear equations with surjective asymptotics at infinity. Moore-Penrose inverses are used for equations defined on Hilbert spaces. Specific practical Ulam-Hyers-Rassias results are derived for finite-dimensional equations. Finally, two examples illustrate our theoretical results.
LA - eng
KW - practical Ulam-Hyers-Rassias stability; nonlinear equation
UR - http://eudml.org/doc/287897
ER -
References
top- Allgower, E. L., Georg, K., 10.1007/978-3-642-61257-2, Springer Series in Computational Mathematics 13 Springer, Berlin (1990). (1990) Zbl0717.65030MR1059455DOI10.1007/978-3-642-61257-2
- András, S., Mészáros, A. R., 10.1016/j.amc.2012.10.115, Appl. Math. Comput. 219 (2013), 4853-4864. (2013) Zbl06447292MR3001534DOI10.1016/j.amc.2012.10.115
- Ben-Israel, A., Greville, T. N. E., 10.1007/b97366, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC 15 Springer, New York (2003). (2003) Zbl1026.15004MR1987382DOI10.1007/b97366
- Berger, M. S., Nonlinearity and Functional Analysis. Lectures on Nonlinear Problems in Mathematical Analysis, Pure and Applied Mathematics 74 Academic Press (Harcourt Brace Jovanovich, Publishers), New York (1977). (1977) Zbl0368.47001MR0488101
- Bihari, I., 10.1007/BF02022967, Acta Math. Acad. Sci. Hung. 7 (1956), 81-94. (1956) Zbl0070.08201MR0079154DOI10.1007/BF02022967
- Burger, M., Ozawa, N., Thom, A., 10.1007/s11856-012-0050-z, Isr. J. Math. 193 (2013), 109-129. (2013) Zbl1271.22003MR3038548DOI10.1007/s11856-012-0050-z
- Cădariu, L., Stabilitatea Ulam-Hyers-Bourgin pentru ecuatii functionale, Univ. Vest Timişoara Timişoara (2007). (2007)
- Chow, S.-N., Hale, J. K., 10.1007/978-1-4613-8159-4, Grundlehren der Mathematischen Wissenschaften 251. A Series of Comprehensive Studies in Mathematics Springer, New York (1982). (1982) Zbl0487.47039MR0660633DOI10.1007/978-1-4613-8159-4
- Cimpean, D. S., Popa, D., 10.1016/j.aml.2011.03.042, Appl. Math. Lett. 24 (2011), 1539-1543. (2011) Zbl1225.35051MR2803705DOI10.1016/j.aml.2011.03.042
- Hegyi, B., Jung, S.-M., 10.1016/j.aml.2012.12.014, Appl. Math. Lett. 26 (2013), 549-552. (2013) Zbl1266.35014MR3027761DOI10.1016/j.aml.2012.12.014
- Hyers, D. H., 10.1073/pnas.27.4.222, Proc. Natl. Acad. Sci. USA 27 (1941), 222-224. (1941) Zbl0061.26403MR0004076DOI10.1073/pnas.27.4.222
- Hyers, D. H., Isac, G., Rassias, T. M., 10.1007/978-1-4612-1790-9, Progress in Nonlinear Differential Equations and Their Applications 34 Birkhäuser, Boston (1998). (1998) Zbl0907.39025MR1639801DOI10.1007/978-1-4612-1790-9
- Jung, S.-M., Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, The Hadronic Press Mathematics Series. Hadronic Press, Palm Harbor (2001). (2001) Zbl0980.39024MR1841182
- Lakshmikantham, V., Leela, S., Martynyuk, A. A., Practical Stability of Nonlinear Systems, World Scientific, Singapore (1990). (1990) Zbl0753.34037MR1089428
- Lungu, N., Popa, D., 10.1016/j.jmaa.2011.06.025, J. Math. Anal. Appl. 385 (2012), 86-91. (2012) Zbl1236.39030MR2832076DOI10.1016/j.jmaa.2011.06.025
- Park, C., 10.1016/j.bulsci.2006.07.004, Bull. Sci. Math. 132 (2008), 87-96. (2008) Zbl1140.39016MR2387819DOI10.1016/j.bulsci.2006.07.004
- Popa, D., Raşa, I., 10.1016/j.jmaa.2011.02.051, J. Math. Anal. Appl. 381 (2011), 530-537. (2011) Zbl1222.34069MR2802090DOI10.1016/j.jmaa.2011.02.051
- Rassias, T. M., 10.1090/S0002-9939-1978-0507327-1, Proc. Am. Math. Soc. 72 (1978), 297-300. (1978) Zbl0398.47040MR0507327DOI10.1090/S0002-9939-1978-0507327-1
- Rus, I. A., Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math. 26 (2010), 103-107. (2010) Zbl1224.34164MR2676724
- Seydel, R., 10.1007/978-1-4419-1740-9, Interdisciplinary Applied Mathematics 5 Springer, New York (2010). (2010) Zbl1195.34004MR2561077DOI10.1007/978-1-4419-1740-9
- Taylor, A. E., Lay, D. C., Introduction to Functional Analysis, John Wiley & Sons, New York (1980). (1980) Zbl0501.46003MR0564653
- Ulam, S. M., A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics 8 Interscience Publishers, New York (1960). (1960) Zbl0086.24101MR0120127
- Wang, J., Fečkan, M., 10.5890/DNC.2014.12.002, Discontin. Nonlinearity Complex 3 (2014), 379-388. (2014) Zbl06459714DOI10.5890/DNC.2014.12.002
- Wang, J., Fečkan, M., Zhou, Y., 10.1016/j.jmaa.2012.05.040, J. Math. Anal. Appl. 395 (2012), 258-264. (2012) Zbl1254.34022MR2943620DOI10.1016/j.jmaa.2012.05.040
- Wei, Y., Ding, J., 10.1016/S0893-9659(00)00200-7, Appl. Math. Lett. 14 (2001), 599-604. (2001) Zbl0982.47003MR1832670DOI10.1016/S0893-9659(00)00200-7
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.