Practical Ulam-Hyers-Rassias stability for nonlinear equations

Jin Rong Wang; Michal Fečkan

Mathematica Bohemica (2017)

  • Volume: 142, Issue: 1, page 47-56
  • ISSN: 0862-7959

Abstract

top
In this paper, we offer a new stability concept, practical Ulam-Hyers-Rassias stability, for nonlinear equations in Banach spaces, which consists in a restriction of Ulam-Hyers-Rassias stability to bounded subsets. We derive some interesting sufficient conditions on practical Ulam-Hyers-Rassias stability from a nonlinear functional analysis point of view. Our method is based on solving nonlinear equations via homotopy method together with Bihari inequality result. Then we consider nonlinear equations with surjective asymptotics at infinity. Moore-Penrose inverses are used for equations defined on Hilbert spaces. Specific practical Ulam-Hyers-Rassias results are derived for finite-dimensional equations. Finally, two examples illustrate our theoretical results.

How to cite

top

Wang, Jin Rong, and Fečkan, Michal. "Practical Ulam-Hyers-Rassias stability for nonlinear equations." Mathematica Bohemica 142.1 (2017): 47-56. <http://eudml.org/doc/287897>.

@article{Wang2017,
abstract = {In this paper, we offer a new stability concept, practical Ulam-Hyers-Rassias stability, for nonlinear equations in Banach spaces, which consists in a restriction of Ulam-Hyers-Rassias stability to bounded subsets. We derive some interesting sufficient conditions on practical Ulam-Hyers-Rassias stability from a nonlinear functional analysis point of view. Our method is based on solving nonlinear equations via homotopy method together with Bihari inequality result. Then we consider nonlinear equations with surjective asymptotics at infinity. Moore-Penrose inverses are used for equations defined on Hilbert spaces. Specific practical Ulam-Hyers-Rassias results are derived for finite-dimensional equations. Finally, two examples illustrate our theoretical results.},
author = {Wang, Jin Rong, Fečkan, Michal},
journal = {Mathematica Bohemica},
keywords = {practical Ulam-Hyers-Rassias stability; nonlinear equation},
language = {eng},
number = {1},
pages = {47-56},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Practical Ulam-Hyers-Rassias stability for nonlinear equations},
url = {http://eudml.org/doc/287897},
volume = {142},
year = {2017},
}

TY - JOUR
AU - Wang, Jin Rong
AU - Fečkan, Michal
TI - Practical Ulam-Hyers-Rassias stability for nonlinear equations
JO - Mathematica Bohemica
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 142
IS - 1
SP - 47
EP - 56
AB - In this paper, we offer a new stability concept, practical Ulam-Hyers-Rassias stability, for nonlinear equations in Banach spaces, which consists in a restriction of Ulam-Hyers-Rassias stability to bounded subsets. We derive some interesting sufficient conditions on practical Ulam-Hyers-Rassias stability from a nonlinear functional analysis point of view. Our method is based on solving nonlinear equations via homotopy method together with Bihari inequality result. Then we consider nonlinear equations with surjective asymptotics at infinity. Moore-Penrose inverses are used for equations defined on Hilbert spaces. Specific practical Ulam-Hyers-Rassias results are derived for finite-dimensional equations. Finally, two examples illustrate our theoretical results.
LA - eng
KW - practical Ulam-Hyers-Rassias stability; nonlinear equation
UR - http://eudml.org/doc/287897
ER -

References

top
  1. Allgower, E. L., Georg, K., 10.1007/978-3-642-61257-2, Springer Series in Computational Mathematics 13 Springer, Berlin (1990). (1990) Zbl0717.65030MR1059455DOI10.1007/978-3-642-61257-2
  2. András, S., Mészáros, A. R., 10.1016/j.amc.2012.10.115, Appl. Math. Comput. 219 (2013), 4853-4864. (2013) Zbl06447292MR3001534DOI10.1016/j.amc.2012.10.115
  3. Ben-Israel, A., Greville, T. N. E., 10.1007/b97366, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC 15 Springer, New York (2003). (2003) Zbl1026.15004MR1987382DOI10.1007/b97366
  4. Berger, M. S., Nonlinearity and Functional Analysis. Lectures on Nonlinear Problems in Mathematical Analysis, Pure and Applied Mathematics 74 Academic Press (Harcourt Brace Jovanovich, Publishers), New York (1977). (1977) Zbl0368.47001MR0488101
  5. Bihari, I., 10.1007/BF02022967, Acta Math. Acad. Sci. Hung. 7 (1956), 81-94. (1956) Zbl0070.08201MR0079154DOI10.1007/BF02022967
  6. Burger, M., Ozawa, N., Thom, A., 10.1007/s11856-012-0050-z, Isr. J. Math. 193 (2013), 109-129. (2013) Zbl1271.22003MR3038548DOI10.1007/s11856-012-0050-z
  7. Cădariu, L., Stabilitatea Ulam-Hyers-Bourgin pentru ecuatii functionale, Univ. Vest Timişoara Timişoara (2007). (2007) 
  8. Chow, S.-N., Hale, J. K., 10.1007/978-1-4613-8159-4, Grundlehren der Mathematischen Wissenschaften 251. A Series of Comprehensive Studies in Mathematics Springer, New York (1982). (1982) Zbl0487.47039MR0660633DOI10.1007/978-1-4613-8159-4
  9. Cimpean, D. S., Popa, D., 10.1016/j.aml.2011.03.042, Appl. Math. Lett. 24 (2011), 1539-1543. (2011) Zbl1225.35051MR2803705DOI10.1016/j.aml.2011.03.042
  10. Hegyi, B., Jung, S.-M., 10.1016/j.aml.2012.12.014, Appl. Math. Lett. 26 (2013), 549-552. (2013) Zbl1266.35014MR3027761DOI10.1016/j.aml.2012.12.014
  11. Hyers, D. H., 10.1073/pnas.27.4.222, Proc. Natl. Acad. Sci. USA 27 (1941), 222-224. (1941) Zbl0061.26403MR0004076DOI10.1073/pnas.27.4.222
  12. Hyers, D. H., Isac, G., Rassias, T. M., 10.1007/978-1-4612-1790-9, Progress in Nonlinear Differential Equations and Their Applications 34 Birkhäuser, Boston (1998). (1998) Zbl0907.39025MR1639801DOI10.1007/978-1-4612-1790-9
  13. Jung, S.-M., Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, The Hadronic Press Mathematics Series. Hadronic Press, Palm Harbor (2001). (2001) Zbl0980.39024MR1841182
  14. Lakshmikantham, V., Leela, S., Martynyuk, A. A., Practical Stability of Nonlinear Systems, World Scientific, Singapore (1990). (1990) Zbl0753.34037MR1089428
  15. Lungu, N., Popa, D., 10.1016/j.jmaa.2011.06.025, J. Math. Anal. Appl. 385 (2012), 86-91. (2012) Zbl1236.39030MR2832076DOI10.1016/j.jmaa.2011.06.025
  16. Park, C., 10.1016/j.bulsci.2006.07.004, Bull. Sci. Math. 132 (2008), 87-96. (2008) Zbl1140.39016MR2387819DOI10.1016/j.bulsci.2006.07.004
  17. Popa, D., Raşa, I., 10.1016/j.jmaa.2011.02.051, J. Math. Anal. Appl. 381 (2011), 530-537. (2011) Zbl1222.34069MR2802090DOI10.1016/j.jmaa.2011.02.051
  18. Rassias, T. M., 10.1090/S0002-9939-1978-0507327-1, Proc. Am. Math. Soc. 72 (1978), 297-300. (1978) Zbl0398.47040MR0507327DOI10.1090/S0002-9939-1978-0507327-1
  19. Rus, I. A., Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math. 26 (2010), 103-107. (2010) Zbl1224.34164MR2676724
  20. Seydel, R., 10.1007/978-1-4419-1740-9, Interdisciplinary Applied Mathematics 5 Springer, New York (2010). (2010) Zbl1195.34004MR2561077DOI10.1007/978-1-4419-1740-9
  21. Taylor, A. E., Lay, D. C., Introduction to Functional Analysis, John Wiley & Sons, New York (1980). (1980) Zbl0501.46003MR0564653
  22. Ulam, S. M., A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics 8 Interscience Publishers, New York (1960). (1960) Zbl0086.24101MR0120127
  23. Wang, J., Fečkan, M., 10.5890/DNC.2014.12.002, Discontin. Nonlinearity Complex 3 (2014), 379-388. (2014) Zbl06459714DOI10.5890/DNC.2014.12.002
  24. Wang, J., Fečkan, M., Zhou, Y., 10.1016/j.jmaa.2012.05.040, J. Math. Anal. Appl. 395 (2012), 258-264. (2012) Zbl1254.34022MR2943620DOI10.1016/j.jmaa.2012.05.040
  25. Wei, Y., Ding, J., 10.1016/S0893-9659(00)00200-7, Appl. Math. Lett. 14 (2001), 599-604. (2001) Zbl0982.47003MR1832670DOI10.1016/S0893-9659(00)00200-7

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.