On the regularity of the one-sided Hardy-Littlewood maximal functions
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 1, page 219-234
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLiu, Feng, and Mao, Suzhen. "On the regularity of the one-sided Hardy-Littlewood maximal functions." Czechoslovak Mathematical Journal 67.1 (2017): 219-234. <http://eudml.org/doc/287907>.
@article{Liu2017,
abstract = {In this paper we study the regularity properties of the one-dimensional one-sided Hardy-Littlewood maximal operators $\mathcal \{M\}^+$ and $\mathcal \{M\}^-$. More precisely, we prove that $\mathcal \{M\}^+$ and $\mathcal \{M\}^-$ map $W^\{1,p\}(\mathbb \{R\})\rightarrow W^\{1,p\}(\mathbb \{R\})$ with $1<p<\infty $, boundedly and continuously. In addition, we show that the discrete versions $M^+$ and $M^-$ map $\{\rm BV\}(\mathbb \{Z\})\rightarrow \{\rm BV\}(\mathbb \{Z\})$ boundedly and map $l^1(\mathbb \{Z\})\rightarrow \{\rm BV\}(\mathbb \{Z\})$ continuously. Specially, we obtain the sharp variation inequalities of $M^+$ and $M^-$, that is, \[\{\rm Var\}(M^\{+\}(f))\le \{\rm Var\}(f)\quad \text\{and\}\quad \{\rm Var\}(M^\{-\}(f))\le \{\rm Var\}(f)\]
if $f\in \{\rm BV\}(\mathbb \{Z\})$, where $\{\rm Var\}(f)$ is the total variation of $f$ on $\mathbb \{Z\}$ and $\{\rm BV\}(\mathbb \{Z\})$ is the set of all functions $f\colon \mathbb \{Z\}\rightarrow \mathbb \{R\}$ satisfying $\{\rm Var\}(f)<\infty $.},
author = {Liu, Feng, Mao, Suzhen},
journal = {Czechoslovak Mathematical Journal},
keywords = {one-sided maximal operator; Sobolev space; bounded variation; continuity},
language = {eng},
number = {1},
pages = {219-234},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the regularity of the one-sided Hardy-Littlewood maximal functions},
url = {http://eudml.org/doc/287907},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Liu, Feng
AU - Mao, Suzhen
TI - On the regularity of the one-sided Hardy-Littlewood maximal functions
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 1
SP - 219
EP - 234
AB - In this paper we study the regularity properties of the one-dimensional one-sided Hardy-Littlewood maximal operators $\mathcal {M}^+$ and $\mathcal {M}^-$. More precisely, we prove that $\mathcal {M}^+$ and $\mathcal {M}^-$ map $W^{1,p}(\mathbb {R})\rightarrow W^{1,p}(\mathbb {R})$ with $1<p<\infty $, boundedly and continuously. In addition, we show that the discrete versions $M^+$ and $M^-$ map ${\rm BV}(\mathbb {Z})\rightarrow {\rm BV}(\mathbb {Z})$ boundedly and map $l^1(\mathbb {Z})\rightarrow {\rm BV}(\mathbb {Z})$ continuously. Specially, we obtain the sharp variation inequalities of $M^+$ and $M^-$, that is, \[{\rm Var}(M^{+}(f))\le {\rm Var}(f)\quad \text{and}\quad {\rm Var}(M^{-}(f))\le {\rm Var}(f)\]
if $f\in {\rm BV}(\mathbb {Z})$, where ${\rm Var}(f)$ is the total variation of $f$ on $\mathbb {Z}$ and ${\rm BV}(\mathbb {Z})$ is the set of all functions $f\colon \mathbb {Z}\rightarrow \mathbb {R}$ satisfying ${\rm Var}(f)<\infty $.
LA - eng
KW - one-sided maximal operator; Sobolev space; bounded variation; continuity
UR - http://eudml.org/doc/287907
ER -
References
top- Aldaz, J. M., Lázaro, J. Pérez, 10.1090/S0002-9947-06-04347-9, Trans. Am. Math. Soc. 359 (2007), 2443-2461. (2007) Zbl1143.42021MR2276629DOI10.1090/S0002-9947-06-04347-9
- Bober, J., Carneiro, E., Hughes, K., Pierce, L. B., 10.1090/S0002-9939-211-11008-6, Proc. Am. Math. Soc. 140 (2012), 1669-1680. (2012) Zbl1245.42017MR2869151DOI10.1090/S0002-9939-211-11008-6
- Calderón, A. P., 10.1073/pnas.59.2.349, Proc. Natl. Acad. Sci. USA 59 (1968), 349-353. (1968) Zbl0185.21806MR0227354DOI10.1073/pnas.59.2.349
- Carneiro, E., Hughes, K., 10.4310/MRL.2012.v19.n6.a6, Math. Res. Lett. 19 (2012), 1245-1262. (2012) Zbl1286.42026MR3091605DOI10.4310/MRL.2012.v19.n6.a6
- Carneiro, E., Moreira, D., 10.1090/S0002-9939-08-09515-4, Proc. Am. Math. Soc. 136 (2008), 4395-4404. (2008) Zbl1157.42003MR2431055DOI10.1090/S0002-9939-08-09515-4
- Dunford, N., Schwartz, J., 10.1073/pnas.41.4.229, Proc. Natl. Acad. Sci. USA 41 (1955), 229-231. (1955) Zbl0064.37001MR0070980DOI10.1073/pnas.41.4.229
- Hajłasz, P., Onninen, J., On boundedness of maximal functions in Sobolev spaces, Ann. Acad. Sci. Fenn. Math. 29 (2004), 167-176. (2004) Zbl1059.46020MR2041705
- Hardy, G. H., Littlewood, J. E., 10.1007/BF02547518, Acta Math. 54 (1930), 81-116 9999JFM99999 56.0264.02. (1930) MR1555303DOI10.1007/BF02547518
- Kinnunen, J., 10.1007/BF02773636, Isr. J. Math. 100 (1997), 117-124. (1997) Zbl0882.43003MR1469106DOI10.1007/BF02773636
- Kinnunen, J., Lindqvist, P., 10.1515/crll.1998.095, J. Reine Angew. Math. 503 (1998), 161-167. (1998) Zbl0904.42015MR1650343DOI10.1515/crll.1998.095
- Kinnunen, J., Saksman, E., 10.1112/S0024609303002017, Bull. Lond. Math. Soc. 35 (2003), 529-535. (2003) Zbl1021.42009MR1979008DOI10.1112/S0024609303002017
- Kurka, O., 10.5186/aasfm.2015.4003, Ann. Acad. Sci. Fenn. Math. 40 (2015), 109-133. (2015) Zbl06496747MR3310075DOI10.5186/aasfm.2015.4003
- Liu, F., Chen, T., Wu, H., 10.1017/S0004972715001392, Bull. Aust. Math. Soc. 94 (2016), 121-130. (2016) Zbl1347.42034MR3539328DOI10.1017/S0004972715001392
- Liu, F., Wu, H., 104153/CMB-2014-070-7, Can. Math. Bull. 58 (2015), 808-817. (2015) Zbl06527789MR3415670DOI104153/CMB-2014-070-7
- Luiro, H., 10.1090/S0002-9939-06-08455-3, Proc. Am. Math. Soc. 135 (2007), 243-251. (2007) Zbl1136.42018MR2280193DOI10.1090/S0002-9939-06-08455-3
- Luiro, H., 10.1017/S0013091507000867, Proc. Edinb. Math. Soc. II. 53 (2010), 211-237. (2010) Zbl1183.42025MR2579688DOI10.1017/S0013091507000867
- Sawyer, E., 10.1090/S0002-9947-1986-0849466-0, Trans. Am. Math. Soc. 297 (1986), 53-61. (1986) Zbl0627.42009MR0849466DOI10.1090/S0002-9947-1986-0849466-0
- Stein, E. M., Shakarchi, R., Real Analysis. Measure Theory, Integration, and Hilbert Spaces, Princeton Lectures in Analysis 3, Princeton University Press, Princeton (2005). (2005) Zbl1081.28001MR2129625
- Tanaka, H., 10.1017/S0004972700020293, Bull. Aust. Math. Soc. 65 (2002), 253-258. (2002) Zbl0999.42013MR1898539DOI10.1017/S0004972700020293
- Temur, F., On regularity of the discrete Hardy-Littlewood maximal function, Available at ArXiv:1303.3993v1 [math.CA].
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.