On the regularity of the one-sided Hardy-Littlewood maximal functions

Feng Liu; Suzhen Mao

Czechoslovak Mathematical Journal (2017)

  • Volume: 67, Issue: 1, page 219-234
  • ISSN: 0011-4642

Abstract

top
In this paper we study the regularity properties of the one-dimensional one-sided Hardy-Littlewood maximal operators + and - . More precisely, we prove that + and - map W 1 , p ( ) W 1 , p ( ) with 1 < p < , boundedly and continuously. In addition, we show that the discrete versions M + and M - map BV ( ) BV ( ) boundedly and map l 1 ( ) BV ( ) continuously. Specially, we obtain the sharp variation inequalities of M + and M - , that is, Var ( M + ( f ) ) Var ( f ) and Var ( M - ( f ) ) Var ( f ) if f BV ( ) , where Var ( f ) is the total variation of f on and BV ( ) is the set of all functions f : satisfying Var ( f ) < .

How to cite

top

Liu, Feng, and Mao, Suzhen. "On the regularity of the one-sided Hardy-Littlewood maximal functions." Czechoslovak Mathematical Journal 67.1 (2017): 219-234. <http://eudml.org/doc/287907>.

@article{Liu2017,
abstract = {In this paper we study the regularity properties of the one-dimensional one-sided Hardy-Littlewood maximal operators $\mathcal \{M\}^+$ and $\mathcal \{M\}^-$. More precisely, we prove that $\mathcal \{M\}^+$ and $\mathcal \{M\}^-$ map $W^\{1,p\}(\mathbb \{R\})\rightarrow W^\{1,p\}(\mathbb \{R\})$ with $1<p<\infty $, boundedly and continuously. In addition, we show that the discrete versions $M^+$ and $M^-$ map $\{\rm BV\}(\mathbb \{Z\})\rightarrow \{\rm BV\}(\mathbb \{Z\})$ boundedly and map $l^1(\mathbb \{Z\})\rightarrow \{\rm BV\}(\mathbb \{Z\})$ continuously. Specially, we obtain the sharp variation inequalities of $M^+$ and $M^-$, that is, \[\{\rm Var\}(M^\{+\}(f))\le \{\rm Var\}(f)\quad \text\{and\}\quad \{\rm Var\}(M^\{-\}(f))\le \{\rm Var\}(f)\] if $f\in \{\rm BV\}(\mathbb \{Z\})$, where $\{\rm Var\}(f)$ is the total variation of $f$ on $\mathbb \{Z\}$ and $\{\rm BV\}(\mathbb \{Z\})$ is the set of all functions $f\colon \mathbb \{Z\}\rightarrow \mathbb \{R\}$ satisfying $\{\rm Var\}(f)<\infty $.},
author = {Liu, Feng, Mao, Suzhen},
journal = {Czechoslovak Mathematical Journal},
keywords = {one-sided maximal operator; Sobolev space; bounded variation; continuity},
language = {eng},
number = {1},
pages = {219-234},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the regularity of the one-sided Hardy-Littlewood maximal functions},
url = {http://eudml.org/doc/287907},
volume = {67},
year = {2017},
}

TY - JOUR
AU - Liu, Feng
AU - Mao, Suzhen
TI - On the regularity of the one-sided Hardy-Littlewood maximal functions
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 1
SP - 219
EP - 234
AB - In this paper we study the regularity properties of the one-dimensional one-sided Hardy-Littlewood maximal operators $\mathcal {M}^+$ and $\mathcal {M}^-$. More precisely, we prove that $\mathcal {M}^+$ and $\mathcal {M}^-$ map $W^{1,p}(\mathbb {R})\rightarrow W^{1,p}(\mathbb {R})$ with $1<p<\infty $, boundedly and continuously. In addition, we show that the discrete versions $M^+$ and $M^-$ map ${\rm BV}(\mathbb {Z})\rightarrow {\rm BV}(\mathbb {Z})$ boundedly and map $l^1(\mathbb {Z})\rightarrow {\rm BV}(\mathbb {Z})$ continuously. Specially, we obtain the sharp variation inequalities of $M^+$ and $M^-$, that is, \[{\rm Var}(M^{+}(f))\le {\rm Var}(f)\quad \text{and}\quad {\rm Var}(M^{-}(f))\le {\rm Var}(f)\] if $f\in {\rm BV}(\mathbb {Z})$, where ${\rm Var}(f)$ is the total variation of $f$ on $\mathbb {Z}$ and ${\rm BV}(\mathbb {Z})$ is the set of all functions $f\colon \mathbb {Z}\rightarrow \mathbb {R}$ satisfying ${\rm Var}(f)<\infty $.
LA - eng
KW - one-sided maximal operator; Sobolev space; bounded variation; continuity
UR - http://eudml.org/doc/287907
ER -

References

top
  1. Aldaz, J. M., Lázaro, J. Pérez, 10.1090/S0002-9947-06-04347-9, Trans. Am. Math. Soc. 359 (2007), 2443-2461. (2007) Zbl1143.42021MR2276629DOI10.1090/S0002-9947-06-04347-9
  2. Bober, J., Carneiro, E., Hughes, K., Pierce, L. B., 10.1090/S0002-9939-211-11008-6, Proc. Am. Math. Soc. 140 (2012), 1669-1680. (2012) Zbl1245.42017MR2869151DOI10.1090/S0002-9939-211-11008-6
  3. Calderón, A. P., 10.1073/pnas.59.2.349, Proc. Natl. Acad. Sci. USA 59 (1968), 349-353. (1968) Zbl0185.21806MR0227354DOI10.1073/pnas.59.2.349
  4. Carneiro, E., Hughes, K., 10.4310/MRL.2012.v19.n6.a6, Math. Res. Lett. 19 (2012), 1245-1262. (2012) Zbl1286.42026MR3091605DOI10.4310/MRL.2012.v19.n6.a6
  5. Carneiro, E., Moreira, D., 10.1090/S0002-9939-08-09515-4, Proc. Am. Math. Soc. 136 (2008), 4395-4404. (2008) Zbl1157.42003MR2431055DOI10.1090/S0002-9939-08-09515-4
  6. Dunford, N., Schwartz, J., 10.1073/pnas.41.4.229, Proc. Natl. Acad. Sci. USA 41 (1955), 229-231. (1955) Zbl0064.37001MR0070980DOI10.1073/pnas.41.4.229
  7. Hajłasz, P., Onninen, J., On boundedness of maximal functions in Sobolev spaces, Ann. Acad. Sci. Fenn. Math. 29 (2004), 167-176. (2004) Zbl1059.46020MR2041705
  8. Hardy, G. H., Littlewood, J. E., 10.1007/BF02547518, Acta Math. 54 (1930), 81-116 9999JFM99999 56.0264.02. (1930) MR1555303DOI10.1007/BF02547518
  9. Kinnunen, J., 10.1007/BF02773636, Isr. J. Math. 100 (1997), 117-124. (1997) Zbl0882.43003MR1469106DOI10.1007/BF02773636
  10. Kinnunen, J., Lindqvist, P., 10.1515/crll.1998.095, J. Reine Angew. Math. 503 (1998), 161-167. (1998) Zbl0904.42015MR1650343DOI10.1515/crll.1998.095
  11. Kinnunen, J., Saksman, E., 10.1112/S0024609303002017, Bull. Lond. Math. Soc. 35 (2003), 529-535. (2003) Zbl1021.42009MR1979008DOI10.1112/S0024609303002017
  12. Kurka, O., 10.5186/aasfm.2015.4003, Ann. Acad. Sci. Fenn. Math. 40 (2015), 109-133. (2015) Zbl06496747MR3310075DOI10.5186/aasfm.2015.4003
  13. Liu, F., Chen, T., Wu, H., 10.1017/S0004972715001392, Bull. Aust. Math. Soc. 94 (2016), 121-130. (2016) Zbl1347.42034MR3539328DOI10.1017/S0004972715001392
  14. Liu, F., Wu, H., 104153/CMB-2014-070-7, Can. Math. Bull. 58 (2015), 808-817. (2015) Zbl06527789MR3415670DOI104153/CMB-2014-070-7
  15. Luiro, H., 10.1090/S0002-9939-06-08455-3, Proc. Am. Math. Soc. 135 (2007), 243-251. (2007) Zbl1136.42018MR2280193DOI10.1090/S0002-9939-06-08455-3
  16. Luiro, H., 10.1017/S0013091507000867, Proc. Edinb. Math. Soc. II. 53 (2010), 211-237. (2010) Zbl1183.42025MR2579688DOI10.1017/S0013091507000867
  17. Sawyer, E., 10.1090/S0002-9947-1986-0849466-0, Trans. Am. Math. Soc. 297 (1986), 53-61. (1986) Zbl0627.42009MR0849466DOI10.1090/S0002-9947-1986-0849466-0
  18. Stein, E. M., Shakarchi, R., Real Analysis. Measure Theory, Integration, and Hilbert Spaces, Princeton Lectures in Analysis 3, Princeton University Press, Princeton (2005). (2005) Zbl1081.28001MR2129625
  19. Tanaka, H., 10.1017/S0004972700020293, Bull. Aust. Math. Soc. 65 (2002), 253-258. (2002) Zbl0999.42013MR1898539DOI10.1017/S0004972700020293
  20. Temur, F., On regularity of the discrete Hardy-Littlewood maximal function, Available at ArXiv:1303.3993v1 [math.CA]. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.