The weak Gelfand-Phillips property in spaces of compact operators
Commentationes Mathematicae Universitatis Carolinae (2017)
- Volume: 58, Issue: 1, page 35-47
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topGhenciu, Ioana. "The weak Gelfand-Phillips property in spaces of compact operators." Commentationes Mathematicae Universitatis Carolinae 58.1 (2017): 35-47. <http://eudml.org/doc/287925>.
@article{Ghenciu2017,
abstract = {For Banach spaces $X$ and $Y$, let $K_\{w^*\}(X^*,Y)$ denote the space of all $w^* - w$ continuous compact operators from $X^*$ to $Y$ endowed with the operator norm. A Banach space $X$ has the $wGP$ property if every Grothendieck subset of $X$ is relatively weakly compact. In this paper we study Banach spaces with property $wGP$. We investigate whether the spaces $K_\{w^*\}(X^*, Y)$ and $X\otimes _\epsilon Y$ have the $wGP$ property, when $X$ and $Y$ have the $wGP$ property.},
author = {Ghenciu, Ioana},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Grothendieck sets; property $wGP$},
language = {eng},
number = {1},
pages = {35-47},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The weak Gelfand-Phillips property in spaces of compact operators},
url = {http://eudml.org/doc/287925},
volume = {58},
year = {2017},
}
TY - JOUR
AU - Ghenciu, Ioana
TI - The weak Gelfand-Phillips property in spaces of compact operators
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2017
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 58
IS - 1
SP - 35
EP - 47
AB - For Banach spaces $X$ and $Y$, let $K_{w^*}(X^*,Y)$ denote the space of all $w^* - w$ continuous compact operators from $X^*$ to $Y$ endowed with the operator norm. A Banach space $X$ has the $wGP$ property if every Grothendieck subset of $X$ is relatively weakly compact. In this paper we study Banach spaces with property $wGP$. We investigate whether the spaces $K_{w^*}(X^*, Y)$ and $X\otimes _\epsilon Y$ have the $wGP$ property, when $X$ and $Y$ have the $wGP$ property.
LA - eng
KW - Grothendieck sets; property $wGP$
UR - http://eudml.org/doc/287925
ER -
References
top- Bourgain J., New Classes of -spaces, Lecture Notes in Mathematics, 889, Springer, Berlin-New York, 1981. MR0639014
- Bourgain J., Diestel J., 10.1002/mana.19841190105, Math. Nachr. 119 (1984), 55–58. Zbl0601.47019MR0774176DOI10.1002/mana.19841190105
- Bessaga C., Pelczynski A., On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151–174. Zbl0084.09805MR0115069
- Collins H.S., Ruess W., 10.2140/pjm.1983.106.45, Pacific J. Math. 106 (1983), 45–71. MR0694671DOI10.2140/pjm.1983.106.45
- Diestel J., Sequences and Series in Banach Spaces, Graduate Texts in Mathematics, 92, Springer, Berlin, 1984. MR0737004
- Diestel J., 10.1090/conm/002/621850, Contemporary Math. 2 (1980), 15–60. Zbl0571.46013MR0621850DOI10.1090/conm/002/621850
- Diestel J., Uhl J.J., Jr., Vector measures, Math. Surveys, 15, American Mathematical Society, Providence, RI, 1977. Zbl0521.46035MR0453964
- Cembranos P., Mendoza J., Banach Spaces of Vector-Valued Functions, Lecture Notes in Mathematics, 1676, Springer, Berlin, 1997. Zbl0902.46017MR1489231
- Domanski P., Lindstrom M., Schluchtermann G., 10.1090/S0002-9939-97-03763-5, Proc. Amer. Math. Soc. 125 (1997), 2285–2291. Zbl0888.47013MR1372028DOI10.1090/S0002-9939-97-03763-5
- Drewnowski L., 10.1007/BF01229808, Math. Z. 193 (1986), 405–411. Zbl0689.46004MR0862887DOI10.1007/BF01229808
- Drewnowski L., Emmanuele G., 10.1007/BF02850021, Rend. Circolo Mat. Palermo 38 (1989), 377–391. Zbl0689.46004MR1053378DOI10.1007/BF02850021
- Emmanuele G., 10.1007/BF01190118, Arch. Math. 58 (1992), 477–485. Zbl0761.46010MR1156580DOI10.1007/BF01190118
- Emmanuele G., The (BD) property in , Indiana Univ. Math. J. 36 (1987), 229–230. MR0877000
- Emmanuele G., A dual characterization of Banach spaces not containing , Bull. Polish Acad. Sci. Math. 34 (1986), 155–160. MR0861172
- Fabian M., Habla P., Hájek P., Montesinos V., Zizler V., Banach Space Theory. The Basis for Linear and Nonlinear Analysis, CMS Books in Mathematics, Springer, New York, 2011. MR2766381
- Fabian M.J., Gâteaux Differentiability of Convex Functions and Topology. Weak Asplund Spaces, Canad. Math. Soc. Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1997. Zbl0883.46011MR1461271
- Ghenciu I., 10.4064/cm138-2-10, Colloq. Math. 138 (2014), no. 2, 255–269. Zbl1330.46023MR3312111DOI10.4064/cm138-2-10
- Ghenciu I., Lewis P., 10.4064/cm126-2-7, Colloq. Math. 126 (2012), no. 2, 231–256, doi:10.4064/cm126-2-7. Zbl1256.46009MR2924252DOI10.4064/cm126-2-7
- Ghenciu I., Lewis P., 10.4064/ba56-3-7, Bull. Polish. Acad. Sci. Math. 56 (2008), 239–256. Zbl1167.46016MR2481977DOI10.4064/ba56-3-7
- Ghenciu I., Lewis P., 10.4064/ba54-3-6, Bull. Polish. Acad. Sci. Math. 54 (2006), 237–256. Zbl1118.46016MR2287199DOI10.4064/ba54-3-6
- Hagler J., Odell E., A Banach space not containing , whose dual ball is not sequentially compact, Illinois J. Math 22 (1978), 290–294. Zbl0391.46015MR0482087
- Haydon R., Levy M., Odell E., On sequences without weak convergent convex block subsequences, Proc. Amer. Soc. 101 (1987), 94–98. MR0883407
- Leung D.H., 10.1002/mana.19901490114, Math. Nachr. 149 (1990), 177–181. Zbl0765.46007MR1124803DOI10.1002/mana.19901490114
- Lindenstrauss J., 10.1090/S0002-9904-1966-11606-3, Bull. Amer. Math. Soc. 72 (1966), 967–970. Zbl0156.36403MR0205040DOI10.1090/S0002-9904-1966-11606-3
- Lindenstrauss J., Tzafriri L., Classical Banach Spaces II, Ergebnisse der Mathematik und ihrer Grenzgebiete, 97, Springer, Berlin-Heidelberg-New York, 1979. Zbl0403.46022MR0540367
- Pełczyński A., 10.4064/sm-30-2-231-246, Studia Math. 30 (1968), 231–246. MR0232195DOI10.4064/sm-30-2-231-246
- Pełczyński A., Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648. Zbl0107.32504MR0149295
- Pełczyński A., Semadeni Z., Spaces of continuous functions III, Studia Math. 18 (1959), 211–222. Zbl0091.27803MR0092942
- Ruess W., Duality and geometry of spaces of compact operators, Functional Analysis: Surveys and Recent Results III. Proc. 3rd Paderborn Conference 1983, North-Holland Math. Studies, 90, North-Holland, Amsterdam, 1984, pp. 59–78. Zbl0573.46007MR0761373
- Ryan R.A., Intoduction to Tensor Products of Banach Spaces, Springer, London, 2002. MR1888309
- Schlumprecht T., Limited sets in Banach spaces, Dissertation, Munich, 1987. Zbl0689.46005
- Ülger A., 10.1017/S0305004100075228, Math. Proc. Cambridge Philos. Soc. 111 (1992), 143–150. Zbl0776.47017MR1131485DOI10.1017/S0305004100075228
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.