The weak Gelfand-Phillips property in spaces of compact operators

Ioana Ghenciu

Commentationes Mathematicae Universitatis Carolinae (2017)

  • Issue: 1, page 35-47
  • ISSN: 0010-2628

Abstract

top
For Banach spaces X and Y , let K w * ( X * , Y ) denote the space of all w * - w continuous compact operators from X * to Y endowed with the operator norm. A Banach space X has the w G P property if every Grothendieck subset of X is relatively weakly compact. In this paper we study Banach spaces with property w G P . We investigate whether the spaces K w * ( X * , Y ) and X ϵ Y have the w G P property, when X and Y have the w G P property.

How to cite

top

Ghenciu, Ioana. "The weak Gelfand-Phillips property in spaces of compact operators." Commentationes Mathematicae Universitatis Carolinae (2017): 35-47. <http://eudml.org/doc/287925>.

@article{Ghenciu2017,
abstract = {For Banach spaces $X$ and $Y$, let $K_\{w^*\}(X^*,Y)$ denote the space of all $w^* - w$ continuous compact operators from $X^*$ to $Y$ endowed with the operator norm. A Banach space $X$ has the $wGP$ property if every Grothendieck subset of $X$ is relatively weakly compact. In this paper we study Banach spaces with property $wGP$. We investigate whether the spaces $K_\{w^*\}(X^*, Y)$ and $X\otimes _\epsilon Y$ have the $wGP$ property, when $X$ and $Y$ have the $wGP$ property.},
author = {Ghenciu, Ioana},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Grothendieck sets; property $wGP$},
language = {eng},
number = {1},
pages = {35-47},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The weak Gelfand-Phillips property in spaces of compact operators},
url = {http://eudml.org/doc/287925},
year = {2017},
}

TY - JOUR
AU - Ghenciu, Ioana
TI - The weak Gelfand-Phillips property in spaces of compact operators
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2017
PB - Charles University in Prague, Faculty of Mathematics and Physics
IS - 1
SP - 35
EP - 47
AB - For Banach spaces $X$ and $Y$, let $K_{w^*}(X^*,Y)$ denote the space of all $w^* - w$ continuous compact operators from $X^*$ to $Y$ endowed with the operator norm. A Banach space $X$ has the $wGP$ property if every Grothendieck subset of $X$ is relatively weakly compact. In this paper we study Banach spaces with property $wGP$. We investigate whether the spaces $K_{w^*}(X^*, Y)$ and $X\otimes _\epsilon Y$ have the $wGP$ property, when $X$ and $Y$ have the $wGP$ property.
LA - eng
KW - Grothendieck sets; property $wGP$
UR - http://eudml.org/doc/287925
ER -

References

top
  1. Bourgain J., New Classes of p -spaces, Lecture Notes in Mathematics, 889, Springer, Berlin-New York, 1981. MR0639014
  2. Bourgain J., Diestel J., 10.1002/mana.19841190105, Math. Nachr. 119 (1984), 55–58. Zbl0601.47019MR0774176DOI10.1002/mana.19841190105
  3. Bessaga C., Pelczynski A., On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151–174. Zbl0084.09805MR0115069
  4. Collins H.S., Ruess W., 10.2140/pjm.1983.106.45, Pacific J. Math. 106 (1983), 45–71. MR0694671DOI10.2140/pjm.1983.106.45
  5. Diestel J., Sequences and Series in Banach Spaces, Graduate Texts in Mathematics, 92, Springer, Berlin, 1984. MR0737004
  6. Diestel J., 10.1090/conm/002/621850, Contemporary Math. 2 (1980), 15–60. Zbl0571.46013MR0621850DOI10.1090/conm/002/621850
  7. Diestel J., Uhl J.J., Jr., Vector measures, Math. Surveys, 15, American Mathematical Society, Providence, RI, 1977. Zbl0521.46035MR0453964
  8. Cembranos P., Mendoza J., Banach Spaces of Vector-Valued Functions, Lecture Notes in Mathematics, 1676, Springer, Berlin, 1997. Zbl0902.46017MR1489231
  9. Domanski P., Lindstrom M., Schluchtermann G., 10.1090/S0002-9939-97-03763-5, Proc. Amer. Math. Soc. 125 (1997), 2285–2291. Zbl0888.47013MR1372028DOI10.1090/S0002-9939-97-03763-5
  10. Drewnowski L., 10.1007/BF01229808, Math. Z. 193 (1986), 405–411. Zbl0689.46004MR0862887DOI10.1007/BF01229808
  11. Drewnowski L., Emmanuele G., 10.1007/BF02850021, Rend. Circolo Mat. Palermo 38 (1989), 377–391. Zbl0689.46004MR1053378DOI10.1007/BF02850021
  12. Emmanuele G., 10.1007/BF01190118, Arch. Math. 58 (1992), 477–485. Zbl0761.46010MR1156580DOI10.1007/BF01190118
  13. Emmanuele G., The (BD) property in L 1 ( μ , E ) , Indiana Univ. Math. J. 36 (1987), 229–230. MR0877000
  14. Emmanuele G., A dual characterization of Banach spaces not containing 1 , Bull. Polish Acad. Sci. Math. 34 (1986), 155–160. MR0861172
  15. Fabian M., Habla P., Hájek P., Montesinos V., Zizler V., Banach Space Theory. The Basis for Linear and Nonlinear Analysis, CMS Books in Mathematics, Springer, New York, 2011. MR2766381
  16. Fabian M.J., Gâteaux Differentiability of Convex Functions and Topology. Weak Asplund Spaces, Canad. Math. Soc. Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1997. Zbl0883.46011MR1461271
  17. Ghenciu I., 10.4064/cm138-2-10, Colloq. Math. 138 (2014), no. 2, 255–269. Zbl1330.46023MR3312111DOI10.4064/cm138-2-10
  18. Ghenciu I., Lewis P., 10.4064/cm126-2-7, Colloq. Math. 126 (2012), no. 2, 231–256, doi:10.4064/cm126-2-7. Zbl1256.46009MR2924252DOI10.4064/cm126-2-7
  19. Ghenciu I., Lewis P., 10.4064/ba56-3-7, Bull. Polish. Acad. Sci. Math. 56 (2008), 239–256. Zbl1167.46016MR2481977DOI10.4064/ba56-3-7
  20. Ghenciu I., Lewis P., 10.4064/ba54-3-6, Bull. Polish. Acad. Sci. Math. 54 (2006), 237–256. Zbl1118.46016MR2287199DOI10.4064/ba54-3-6
  21. Hagler J., Odell E., A Banach space not containing 1 , whose dual ball is not w e a k * sequentially compact, Illinois J. Math 22 (1978), 290–294. Zbl0391.46015MR0482087
  22. Haydon R., Levy M., Odell E., On sequences without weak * convergent convex block subsequences, Proc. Amer. Soc. 101 (1987), 94–98. MR0883407
  23. Leung D.H., 10.1002/mana.19901490114, Math. Nachr. 149 (1990), 177–181. Zbl0765.46007MR1124803DOI10.1002/mana.19901490114
  24. Lindenstrauss J., 10.1090/S0002-9904-1966-11606-3, Bull. Amer. Math. Soc. 72 (1966), 967–970. Zbl0156.36403MR0205040DOI10.1090/S0002-9904-1966-11606-3
  25. Lindenstrauss J., Tzafriri L., Classical Banach Spaces II, Ergebnisse der Mathematik und ihrer Grenzgebiete, 97, Springer, Berlin-Heidelberg-New York, 1979. Zbl0403.46022MR0540367
  26. Pełczyński A., On Banach spaces containing L 1 ( μ ) , Studia Math. 30 (1968), 231–246. MR0232195
  27. Pełczyński A., Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648. Zbl0107.32504MR0149295
  28. Pełczyński A., Semadeni Z., Spaces of continuous functions III, Studia Math. 18 (1959), 211–222. Zbl0091.27803MR0092942
  29. Ruess W., Duality and geometry of spaces of compact operators, Functional Analysis: Surveys and Recent Results III. Proc. 3rd Paderborn Conference 1983, North-Holland Math. Studies, 90, North-Holland, Amsterdam, 1984, pp. 59–78. Zbl0573.46007MR0761373
  30. Ryan R.A., Intoduction to Tensor Products of Banach Spaces, Springer, London, 2002. MR1888309
  31. Schlumprecht T., Limited sets in Banach spaces, Dissertation, Munich, 1987. Zbl0689.46005
  32. Ülger A., 10.1017/S0305004100075228, Math. Proc. Cambridge Philos. Soc. 111 (1992), 143–150. Zbl0776.47017MR1131485DOI10.1017/S0305004100075228

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.