On a Class of Generalized quasi-Einstein Manifolds with Applications to Relativity
Sahanous Mallick; Uday Chand De
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2016)
- Volume: 55, Issue: 2, page 111-127
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topMallick, Sahanous, and De, Uday Chand. "On a Class of Generalized quasi-Einstein Manifolds with Applications to Relativity." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 55.2 (2016): 111-127. <http://eudml.org/doc/287927>.
@article{Mallick2016,
abstract = {Quasi Einstein manifold is a simple and natural generalization of Einstein manifold. The object of the present paper is to study some properties of generalized quasi Einstein manifolds. We also discuss $G(QE)_\{4\}$ with space-matter tensor and some properties related to it. Two non-trivial examples have been constructed to prove the existence of generalized quasi Einstein spacetimes.},
author = {Mallick, Sahanous, De, Uday Chand},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Einstein manifolds; quasi Einstein manifolds; generalized quasi Einstein manifolds; quasi-conformal curvature tensor; space-matter tensor},
language = {eng},
number = {2},
pages = {111-127},
publisher = {Palacký University Olomouc},
title = {On a Class of Generalized quasi-Einstein Manifolds with Applications to Relativity},
url = {http://eudml.org/doc/287927},
volume = {55},
year = {2016},
}
TY - JOUR
AU - Mallick, Sahanous
AU - De, Uday Chand
TI - On a Class of Generalized quasi-Einstein Manifolds with Applications to Relativity
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2016
PB - Palacký University Olomouc
VL - 55
IS - 2
SP - 111
EP - 127
AB - Quasi Einstein manifold is a simple and natural generalization of Einstein manifold. The object of the present paper is to study some properties of generalized quasi Einstein manifolds. We also discuss $G(QE)_{4}$ with space-matter tensor and some properties related to it. Two non-trivial examples have been constructed to prove the existence of generalized quasi Einstein spacetimes.
LA - eng
KW - Einstein manifolds; quasi Einstein manifolds; generalized quasi Einstein manifolds; quasi-conformal curvature tensor; space-matter tensor
UR - http://eudml.org/doc/287927
ER -
References
top- Ahsan, Z., A symmetry property of the spacetime of general relativity in terms of the space-matter tensor, . Brazilian J. Phys. 26 (1996), 572–576. (1996)
- Ahsan, Z., Siddiqui, S. A., On the divergence of the space-matter tensor in general relativity, . Adv. Studies Theor. Phys. 4 (2010), 543–556. (2010) Zbl1216.83008MR2739701
- Ahsan, Z., Siddiqui, S. A., 10.1007/s10773-009-0121-z, . Int J. Theor. Phys. 48, 11 (2009), 3202–3212. (2009) Zbl1255.83110MR2546699DOI10.1007/s10773-009-0121-z
- Amur, K., Maralabhavi, Y. B., On quasi-conformal flat spaces, . Tensor (N.S.) 31, 2 (1977), 194–198. (1977) MR0461380
- Bejan, C. L., Characterizations of quasi-Einstein manifolds, . An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N. S.) 53 (2007), 67–72. (2007) Zbl1199.53078MR2522383
- Bejan, C. L., Binh, T. Q., Generalized Einstein manifolds, . In: Differential Geometry and its Applications, Proceedings of the 10th International Conference on DGA2007, Olomouc, Czech Republic, 27–31 August 2007, World Sci. Publ., Hackensack, NJ, 2008, 57–64. (2008) Zbl1172.53029MR2462782
- Besse, A. L., Einstein Manifolds, . Classics in Mathematics, Springer-Verlag, Berlin, Heidelberg, 1987. (1987) Zbl0613.53001MR2371700
- Chaki, M. C., Maity, R. K., On quasi Einstein manifolds, . Publ. Math. Debrecen 57 (2000), 297–306. (2000) Zbl0968.53030MR1798715
- Chaki, M. C., On generalized quasi-Einstein manifolds, . Publ. Math. Debrecen 58 (2001), 683–691. (2001) Zbl1062.53035MR1828719
- Chaki, M. C., Ray, S., 10.1007/BF02302387, . Int. J. Theor. Phys. 35 (1996), 1027–1032. (1996) MR1386778DOI10.1007/BF02302387
- De, U. C., Guha, N., Kamilya, D., On generalized Ricci-recurrent manifolds, . Tensor (N.S.) 56 (1995), 312–317. (1995) Zbl0859.53009MR1413041
- De, U. C., Ghosh, G. C., 10.1023/B:MAHU.0000038977.94711.ab, . Period. Math. Hungar. 48 (2004), 223–231. (2004) Zbl1059.53030MR2077698DOI10.1023/B:MAHU.0000038977.94711.ab
- De, U. C., Ghosh, G. C., On conformally flat special quasi-Einstein manifolds, . Publ. Math. Debrecen 66 (2005), 129–136. (2005) Zbl1075.53039MR2128688
- De, U. C., Ghosh, G. C., On quasi Einstein and special quasi Einstein manifolds, . In: Proc. of the Conf. of Mathematics and its Applications, Kuwait University, Kuwait, 2004, 178–191. (2004) MR2143298
- De, U. C., Gazi, A. K., On nearly quasi Einstein manifolds, . Novi Sad J. Math. 38 (2008), 115–121. (2008) Zbl1274.53066MR2526034
- De, U. C., Sarkar, A., On the quasi-conformal curvature tensor of a -contact metric manifolds, . Math. Rep. 14, 2 (2012), 115–129. (2012) MR3051849
- De, U. C., Matsuyama, Y., Quasi-conformally flat manifolds satisfying certain conditions on the Ricci tensor, . SUT J. Math. 42, 2 (2006), 295–303. (2006) MR2419267
- De, U. C., Jun, J. B., Gazi, A. K., 10.4134/BKMS.2008.45.2.313, . Bull. Korean Math. Soc. 45, 2 (2008), 313–319. (2008) Zbl1148.53306MR2419079DOI10.4134/BKMS.2008.45.2.313
- De, U. C., Mallick, S., Spacetimes admitting -curvature tensor, . Int. J. Geom. Methods Mod. Phys. 11 (2014), 1–8. (2014) Zbl1291.53022MR3194321
- Hosseinzadeh, A., Taleshian, A., 10.4134/CKMS.2012.27.2.317, . Commun. Korean Math. Soc. 27 (2012), 317–326. (2012) Zbl1252.53057MR2962525DOI10.4134/CKMS.2012.27.2.317
- Debnath, P., Konar, A., On quasi-Einstein manifolds and quasi-Einstein spacetimes, . Differ. Geom. Dyn. Syst. 12 (2010), 73–82. (2010) MR2606548
- Gray, A., Einstein-like manifolds which are not Einstein, . Geom. Dedicate 7 (1998), 259–280. (1998) MR0505561
- Guha, S., On a perfect fluid space-time admitting quasi conformal curvature tensor, . Facta Univ., Ser. Mech. Automat. Control Robot. 3, 14 (2003), 843–849. (2003) Zbl1056.53022MR2021832
- Guha, S. R., On quasi-Einstein and generalized quasi-Einstein manifolds, . Facta Univ., Ser. Mech. Automat. Control Robot. 3, 14 (2003), 821–842. (2003) Zbl1056.53033MR2021831
- Güler, S., Demirbağ, S. A., 10.1007/s10773-015-2692-1, . Int. J. Theor. Phys. 55, 1 (2016), 548–562. (2016) Zbl1337.83010DOI10.1007/s10773-015-2692-1
- Mantica, C. A., Suh, Y. J., Conformally symmetric manifolds and quasi conformally recurrent Riemannian manifolds, . Balkan J. Geom. Appl. 16, 1 (2011), 66–77. (2011) Zbl1226.53007MR2785717
- Mantica, C. A., Suh, Y. J., 10.1063/1.4871442, . J. Math. Phys. 55, 4 (2014), 1–12. (2014) MR3390591DOI10.1063/1.4871442
- Nagaraja, H. G., On N(k)-mixed quasi-Einstein manifolds, . Eur. J. Pure Appl. Math. 3 (2010), 16–25. (2010) MR2578821
- Novello, M., Reboucas, M. J., 10.1086/156533, . Astrophysical Journal 225 (1978), 719–724. (1978) DOI10.1086/156533
- O’Neill, B., Semi-Riemannian Geometry, . Academic Press, New York, 1983. (1983) MR0719023
- Özgür, C., 10.1016/j.chaos.2008.03.016, . Chaos, Solutions and Fractals 38 (2008), 1373–1377. (2008) Zbl1154.53311MR2456527DOI10.1016/j.chaos.2008.03.016
- Özgür, C., 10.1016/j.chaos.2007.08.070, . Chaos, Solitons and Fractals 40 (2009), 1156–1161. (2009) Zbl1197.53059MR2526102DOI10.1016/j.chaos.2007.08.070
- Özgür, C., On a class of generalized quasi-Einstein manifolds, . Applied Sciences, Balkan Society of Geometers 8 (2006), 138–141. (2006) Zbl1103.53023MR2216533
- Özgür, C., Sular, S., On N(k)-quasi-Einstein manifolds satisfying certain conditions, Balkan J. Geom. Appl., 13 (2008), 74–79. (2008) MR2395278
- Özgür, C., Sular, S., On some properties of generalized quasi-Einstein manifolds, . Indian J. Math. 50 (2008), 297–302. (2008) Zbl1168.53026MR2517733
- Özgür, C., Sular, S., Characterizations of generalized quasi-Einstein manifolds, . An. St. Univ. Ovidius Constanta 20 (2012), 407–416. (2012) Zbl1274.53073MR2928431
- Patterson, E. M., 10.1112/jlms/s1-27.3.287, . Journal London Math. Soc. 27 (1952), 287–295. (1952) Zbl0048.15604MR0048891DOI10.1112/jlms/s1-27.3.287
- Petrov, A. Z., Einstein Spaces, . Pergamon Press, Oxford, 1949. (1949) MR0244912
- Ray, D., 10.1063/1.524401, . Math. Phys. 21, 12 (1980), 2797–2798. (1980) MR0597598DOI10.1063/1.524401
- Sachs, R. K., Hu, W., General Relativity for Mathematician, . Springer Verlag, New York, 1977. (1977) MR0503498
- Schouten, J. A., Ricci-Calculus, . Springer, Berlin, 1954. (1954) Zbl0057.37803
- Taleshian, A., Hosseinzadeh, A. A., Investigation of some conditions on N(k)-quasi Einstein manifolds, . Bull. Malays. Math. Sci. Soc. 34 (2011), 455–464. (2011) Zbl1232.53041MR2823578
- Yano, K., Sawaki, S., 10.4310/jdg/1214428253, . J. Differential Geom. 2 (1968), 161–184. (1968) Zbl0167.19802MR0233314DOI10.4310/jdg/1214428253
- Zengin, F. Ö., m-Projectively flat spacetimes, . Math. Reports 4, 4 (2012), 363–370. (2012) Zbl1289.53089MR3086715
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.