On a Class of Generalized quasi-Einstein Manifolds with Applications to Relativity

Sahanous Mallick; Uday Chand De

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2016)

  • Volume: 55, Issue: 2, page 111-127
  • ISSN: 0231-9721

Abstract

top
Quasi Einstein manifold is a simple and natural generalization of Einstein manifold. The object of the present paper is to study some properties of generalized quasi Einstein manifolds. We also discuss G ( Q E ) 4 with space-matter tensor and some properties related to it. Two non-trivial examples have been constructed to prove the existence of generalized quasi Einstein spacetimes.

How to cite

top

Mallick, Sahanous, and De, Uday Chand. "On a Class of Generalized quasi-Einstein Manifolds with Applications to Relativity." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 55.2 (2016): 111-127. <http://eudml.org/doc/287927>.

@article{Mallick2016,
abstract = {Quasi Einstein manifold is a simple and natural generalization of Einstein manifold. The object of the present paper is to study some properties of generalized quasi Einstein manifolds. We also discuss $G(QE)_\{4\}$ with space-matter tensor and some properties related to it. Two non-trivial examples have been constructed to prove the existence of generalized quasi Einstein spacetimes.},
author = {Mallick, Sahanous, De, Uday Chand},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Einstein manifolds; quasi Einstein manifolds; generalized quasi Einstein manifolds; quasi-conformal curvature tensor; space-matter tensor},
language = {eng},
number = {2},
pages = {111-127},
publisher = {Palacký University Olomouc},
title = {On a Class of Generalized quasi-Einstein Manifolds with Applications to Relativity},
url = {http://eudml.org/doc/287927},
volume = {55},
year = {2016},
}

TY - JOUR
AU - Mallick, Sahanous
AU - De, Uday Chand
TI - On a Class of Generalized quasi-Einstein Manifolds with Applications to Relativity
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2016
PB - Palacký University Olomouc
VL - 55
IS - 2
SP - 111
EP - 127
AB - Quasi Einstein manifold is a simple and natural generalization of Einstein manifold. The object of the present paper is to study some properties of generalized quasi Einstein manifolds. We also discuss $G(QE)_{4}$ with space-matter tensor and some properties related to it. Two non-trivial examples have been constructed to prove the existence of generalized quasi Einstein spacetimes.
LA - eng
KW - Einstein manifolds; quasi Einstein manifolds; generalized quasi Einstein manifolds; quasi-conformal curvature tensor; space-matter tensor
UR - http://eudml.org/doc/287927
ER -

References

top
  1. Ahsan, Z., A symmetry property of the spacetime of general relativity in terms of the space-matter tensor, . Brazilian J. Phys. 26 (1996), 572–576. (1996) 
  2. Ahsan, Z., Siddiqui, S. A., On the divergence of the space-matter tensor in general relativity, . Adv. Studies Theor. Phys. 4 (2010), 543–556. (2010) Zbl1216.83008MR2739701
  3. Ahsan, Z., Siddiqui, S. A., 10.1007/s10773-009-0121-z, . Int J. Theor. Phys. 48, 11 (2009), 3202–3212. (2009) Zbl1255.83110MR2546699DOI10.1007/s10773-009-0121-z
  4. Amur, K., Maralabhavi, Y. B., On quasi-conformal flat spaces, . Tensor (N.S.) 31, 2 (1977), 194–198. (1977) MR0461380
  5. Bejan, C. L., Characterizations of quasi-Einstein manifolds, . An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N. S.) 53 (2007), 67–72. (2007) Zbl1199.53078MR2522383
  6. Bejan, C. L., Binh, T. Q., Generalized Einstein manifolds, . In: Differential Geometry and its Applications, Proceedings of the 10th International Conference on DGA2007, Olomouc, Czech Republic, 27–31 August 2007, World Sci. Publ., Hackensack, NJ, 2008, 57–64. (2008) Zbl1172.53029MR2462782
  7. Besse, A. L., Einstein Manifolds, . Classics in Mathematics, Springer-Verlag, Berlin, Heidelberg, 1987. (1987) Zbl0613.53001MR2371700
  8. Chaki, M. C., Maity, R. K., On quasi Einstein manifolds, . Publ. Math. Debrecen 57 (2000), 297–306. (2000) Zbl0968.53030MR1798715
  9. Chaki, M. C., On generalized quasi-Einstein manifolds, . Publ. Math. Debrecen 58 (2001), 683–691. (2001) Zbl1062.53035MR1828719
  10. Chaki, M. C., Ray, S., 10.1007/BF02302387, . Int. J. Theor. Phys. 35 (1996), 1027–1032. (1996) MR1386778DOI10.1007/BF02302387
  11. De, U. C., Guha, N., Kamilya, D., On generalized Ricci-recurrent manifolds, . Tensor (N.S.) 56 (1995), 312–317. (1995) Zbl0859.53009MR1413041
  12. De, U. C., Ghosh, G. C., 10.1023/B:MAHU.0000038977.94711.ab, . Period. Math. Hungar. 48 (2004), 223–231. (2004) Zbl1059.53030MR2077698DOI10.1023/B:MAHU.0000038977.94711.ab
  13. De, U. C., Ghosh, G. C., On conformally flat special quasi-Einstein manifolds, . Publ. Math. Debrecen 66 (2005), 129–136. (2005) Zbl1075.53039MR2128688
  14. De, U. C., Ghosh, G. C., On quasi Einstein and special quasi Einstein manifolds, . In: Proc. of the Conf. of Mathematics and its Applications, Kuwait University, Kuwait, 2004, 178–191. (2004) MR2143298
  15. De, U. C., Gazi, A. K., On nearly quasi Einstein manifolds, . Novi Sad J. Math. 38 (2008), 115–121. (2008) Zbl1274.53066MR2526034
  16. De, U. C., Sarkar, A., On the quasi-conformal curvature tensor of a ( k , μ ) -contact metric manifolds, . Math. Rep. 14, 2 (2012), 115–129. (2012) MR3051849
  17. De, U. C., Matsuyama, Y., Quasi-conformally flat manifolds satisfying certain conditions on the Ricci tensor, . SUT J. Math. 42, 2 (2006), 295–303. (2006) MR2419267
  18. De, U. C., Jun, J. B., Gazi, A. K., 10.4134/BKMS.2008.45.2.313, . Bull. Korean Math. Soc. 45, 2 (2008), 313–319. (2008) Zbl1148.53306MR2419079DOI10.4134/BKMS.2008.45.2.313
  19. De, U. C., Mallick, S., Spacetimes admitting W 2 -curvature tensor, . Int. J. Geom. Methods Mod. Phys. 11 (2014), 1–8. (2014) Zbl1291.53022MR3194321
  20. Hosseinzadeh, A., Taleshian, A., 10.4134/CKMS.2012.27.2.317, . Commun. Korean Math. Soc. 27 (2012), 317–326. (2012) Zbl1252.53057MR2962525DOI10.4134/CKMS.2012.27.2.317
  21. Debnath, P., Konar, A., On quasi-Einstein manifolds and quasi-Einstein spacetimes, . Differ. Geom. Dyn. Syst. 12 (2010), 73–82. (2010) MR2606548
  22. Gray, A., Einstein-like manifolds which are not Einstein, . Geom. Dedicate 7 (1998), 259–280. (1998) MR0505561
  23. Guha, S., On a perfect fluid space-time admitting quasi conformal curvature tensor, . Facta Univ., Ser. Mech. Automat. Control Robot. 3, 14 (2003), 843–849. (2003) Zbl1056.53022MR2021832
  24. Guha, S. R., On quasi-Einstein and generalized quasi-Einstein manifolds, . Facta Univ., Ser. Mech. Automat. Control Robot. 3, 14 (2003), 821–842. (2003) Zbl1056.53033MR2021831
  25. Güler, S., Demirbağ, S. A., 10.1007/s10773-015-2692-1, . Int. J. Theor. Phys. 55, 1 (2016), 548–562. (2016) Zbl1337.83010DOI10.1007/s10773-015-2692-1
  26. Mantica, C. A., Suh, Y. J., Conformally symmetric manifolds and quasi conformally recurrent Riemannian manifolds, . Balkan J. Geom. Appl. 16, 1 (2011), 66–77. (2011) Zbl1226.53007MR2785717
  27. Mantica, C. A., Suh, Y. J., 10.1063/1.4871442, . J. Math. Phys. 55, 4 (2014), 1–12. (2014) MR3390591DOI10.1063/1.4871442
  28. Nagaraja, H. G., On N(k)-mixed quasi-Einstein manifolds, . Eur. J. Pure Appl. Math. 3 (2010), 16–25. (2010) MR2578821
  29. Novello, M., Reboucas, M. J., 10.1086/156533, . Astrophysical Journal 225 (1978), 719–724. (1978) DOI10.1086/156533
  30. O’Neill, B., Semi-Riemannian Geometry, . Academic Press, New York, 1983. (1983) MR0719023
  31. Özgür, C., 10.1016/j.chaos.2008.03.016, . Chaos, Solutions and Fractals 38 (2008), 1373–1377. (2008) Zbl1154.53311MR2456527DOI10.1016/j.chaos.2008.03.016
  32. Özgür, C., 10.1016/j.chaos.2007.08.070, . Chaos, Solitons and Fractals 40 (2009), 1156–1161. (2009) Zbl1197.53059MR2526102DOI10.1016/j.chaos.2007.08.070
  33. Özgür, C., On a class of generalized quasi-Einstein manifolds, . Applied Sciences, Balkan Society of Geometers 8 (2006), 138–141. (2006) Zbl1103.53023MR2216533
  34. Özgür, C., Sular, S., On N(k)-quasi-Einstein manifolds satisfying certain conditions, Balkan J. Geom. Appl., 13 (2008), 74–79. (2008) MR2395278
  35. Özgür, C., Sular, S., On some properties of generalized quasi-Einstein manifolds, . Indian J. Math. 50 (2008), 297–302. (2008) Zbl1168.53026MR2517733
  36. Özgür, C., Sular, S., Characterizations of generalized quasi-Einstein manifolds, . An. St. Univ. Ovidius Constanta 20 (2012), 407–416. (2012) Zbl1274.53073MR2928431
  37. Patterson, E. M., 10.1112/jlms/s1-27.3.287, . Journal London Math. Soc. 27 (1952), 287–295. (1952) Zbl0048.15604MR0048891DOI10.1112/jlms/s1-27.3.287
  38. Petrov, A. Z., Einstein Spaces, . Pergamon Press, Oxford, 1949. (1949) MR0244912
  39. Ray, D., 10.1063/1.524401, . Math. Phys. 21, 12 (1980), 2797–2798. (1980) MR0597598DOI10.1063/1.524401
  40. Sachs, R. K., Hu, W., General Relativity for Mathematician, . Springer Verlag, New York, 1977. (1977) MR0503498
  41. Schouten, J. A., Ricci-Calculus, . Springer, Berlin, 1954. (1954) Zbl0057.37803
  42. Taleshian, A., Hosseinzadeh, A. A., Investigation of some conditions on N(k)-quasi Einstein manifolds, . Bull. Malays. Math. Sci. Soc. 34 (2011), 455–464. (2011) Zbl1232.53041MR2823578
  43. Yano, K., Sawaki, S., 10.4310/jdg/1214428253, . J. Differential Geom. 2 (1968), 161–184. (1968) Zbl0167.19802MR0233314DOI10.4310/jdg/1214428253
  44. Zengin, F. Ö., m-Projectively flat spacetimes, . Math. Reports 4, 4 (2012), 363–370. (2012) Zbl1289.53089MR3086715

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.