Time discretizations for evolution problems
Applications of Mathematics (2017)
- Volume: 62, Issue: 2, page 135-169
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topVlasák, Miloslav. "Time discretizations for evolution problems." Applications of Mathematics 62.2 (2017): 135-169. <http://eudml.org/doc/287958>.
@article{Vlasák2017,
abstract = {The aim of this work is to give an introductory survey on time discretizations for liner parabolic problems. The theory of stability for stiff ordinary differential equations is explained on this problem and applied to Runge-Kutta and multi-step discretizations. Moreover, a natural connection between Galerkin time discretizations and Runge-Kutta methods together with order reduction phenomenon is discussed.},
author = {Vlasák, Miloslav},
journal = {Applications of Mathematics},
keywords = {time discretizations; parabolic PDEs; stiff ODEs; Runge-Kutta methods; multi-step methods},
language = {eng},
number = {2},
pages = {135-169},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Time discretizations for evolution problems},
url = {http://eudml.org/doc/287958},
volume = {62},
year = {2017},
}
TY - JOUR
AU - Vlasák, Miloslav
TI - Time discretizations for evolution problems
JO - Applications of Mathematics
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 2
SP - 135
EP - 169
AB - The aim of this work is to give an introductory survey on time discretizations for liner parabolic problems. The theory of stability for stiff ordinary differential equations is explained on this problem and applied to Runge-Kutta and multi-step discretizations. Moreover, a natural connection between Galerkin time discretizations and Runge-Kutta methods together with order reduction phenomenon is discussed.
LA - eng
KW - time discretizations; parabolic PDEs; stiff ODEs; Runge-Kutta methods; multi-step methods
UR - http://eudml.org/doc/287958
ER -
References
top- Akrivis, G., Makridakis, C., Nochetto, R. H., 10.1007/s00211-011-0363-6, Numer. Math. 118 (2011), 429-456. (2011) Zbl1228.65125MR2810802DOI10.1007/s00211-011-0363-6
- Alexander, R., 10.1137/0714068, SIAM J. Numer. Anal. 14 (1977), 1006-1021. (1977) Zbl0374.65038MR0458890DOI10.1137/0714068
- Boffi, D., 10.1017/S0962492910000012, Acta Numer. 19 (2010), 1-120. (2010) Zbl1242.65110MR2652780DOI10.1017/S0962492910000012
- Brenner, P., Crouzeix, M., Thomée, V., 10.1051/m2an/1982160100051, RAIRO, Anal. Numér. 16 (1982), 5-26. (1982) Zbl0477.65040MR0648742DOI10.1051/m2an/1982160100051
- Butcher, J. C., 10.2307/2003405, Math. Comput. 18 (1964), 50-64. (1964) Zbl0123.11701MR0159424DOI10.2307/2003405
- Coddington, E. A., Levinson, N., Theory of Ordinary Differential Equations, McGraw-Hill Book Company, New York (1955). (1955) Zbl0064.33002MR0069338
- Crouzeix, M., Hundsdorfer, W. H., Spijker, M. N., 10.1007/BF01937328, BIT 23 (1983), 84-91. (1983) Zbl0506.65030MR0689606DOI10.1007/BF01937328
- Crouzeix, M., Lisbona, F. J., 10.1137/0721037, SIAM J. Numer. Anal. 21 (1984), 512-534. (1984) Zbl0542.65038MR0744171DOI10.1137/0721037
- Crouzeix, M., Raviart, P.-A., Approximation des équations d'évolution linéaires par des méthodes à pas multiples, C. R. Acad. Sci., Paris, Sér. A 283 (1976), 367-370. (1976) Zbl0361.65064MR0426434
- Curtiss, C. F., Hirschfelder, J. O., 10.1073/pnas.38.3.235, Proc. Natl. Acad. Sci. USA 38 (1952), 235-243. (1952) Zbl0046.13602MR0047404DOI10.1073/pnas.38.3.235
- Dahlquist, G., 10.7146/math.scand.a-10454, Math. Scand. 4 (1956), 33-53. (1956) Zbl0071.11803MR0080998DOI10.7146/math.scand.a-10454
- Dekker, K., On the iteration error in algebraically stable Runge-Kutta methods, Report NW 138/82, Math. Centrum, Amsterdam (1982). (1982)
- Dolejší, V., Feistauer, M., 10.1007/978-3-319-19267-3, Springer Series in Computational Mathematics 48, Springer, Cham (2015). (2015) Zbl06467550MR3363720DOI10.1007/978-3-319-19267-3
- Ehle, B. L., On Padé approximations to the exponential function and A-stable methods for the numerical solution of initial value problems, Thesis (Ph.D)-University of Waterloo, Ontario (1969). (1969) MR2716012
- Frank, R., Schneid, J., Ueberhuber, C. W., 10.1137/0722031, SIAM J. Numer. Anal. 22 (1985), 515-534. (1985) Zbl0577.65056MR0787574DOI10.1137/0722031
- Gear, C. W., Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs (1971). (1971) Zbl1145.65316MR0315898
- Gear, C. W., Tu, K. W., 10.1137/0711079, SIAM J. Numer. Anal. 11 (1974), 1025-1043. (1974) Zbl0292.65041MR0368436DOI10.1137/0711079
- Grigorieff, R. D., 10.1007/BF01389580, Numer. Math. 42 (1983), 359-377. (1983) Zbl0554.65051MR0723632DOI10.1007/BF01389580
- Grigorieff, R. D., Pfeiffer, H. J., 10.1007/978-3-322-91202-2, Teubner Studienbücher: Mathematik. B. G. Teubner, Stuttgart (1977). (1977) Zbl0372.65025MR0657222DOI10.1007/978-3-322-91202-2
- Guillou, A., Soulé, J. L., 10.1051/m2an/196903r300171, Rev. Franç. Inform. Rech. Opér. 3 (1969), 17-44. (1969) Zbl0214.15005MR0280008DOI10.1051/m2an/196903r300171
- Hairer, E., Nørsett, S. P., Wanner, G., 10.1007/978-3-540-78862-1, Springer Series in Computational Mathematics 8, Springer, Berlin (1993). (1993) Zbl0789.65048MR1227985DOI10.1007/978-3-540-78862-1
- Hairer, E., Wanner, G., 10.1007/978-3-642-05221-7, Springer Series in Computational Mathematics 14, Springer, Berlin (1996). (1996) Zbl0859.65067MR1439506DOI10.1007/978-3-642-05221-7
- Henrici, P., Discrete Variable Methods in Ordinary Differential Equations, John Wiley and Sons, New York (1962). (1962) Zbl0112.34901MR0135729
- Hochbruck, M., Ostermann, A., 10.1017/S0962492910000048, Acta Numerica 19 (2010), 209-286. (2010) Zbl1242.65109MR2652783DOI10.1017/S0962492910000048
- Hulme, B. L., 10.2307/2005168, Math. Comput. 26 (1972), 415-426. (1972) Zbl0265.65038MR0321301DOI10.2307/2005168
- Kuntzmann, J., 10.1002/zamm.19610411317, Z. Angew. Math. Mech. 41 (1961), T28--T31. (1961) Zbl0106.10403DOI10.1002/zamm.19610411317
- Lubich, C., 10.1007/BF01385657, Numer. Math. 58 (1991), 839-853. (1991) Zbl0729.65055MR1098868DOI10.1007/BF01385657
- Padé, H., 10.24033/asens.378, Ann. Sci. Éc. Norm. Supér. (3) 9 (1892), 3-93 9999JFM99999 24.0360.02. (1892) MR1508880DOI10.24033/asens.378
- Prothero, A., Robinson, A., 10.2307/2005822, Math. Comput. 28 (1974), 145-162. (1974) Zbl0309.65034MR0331793DOI10.2307/2005822
- Rektorys, K., The Method of Discretization in Time and Partial Differential Equations, Mathematics and Its Applications (East European Series) 4, D. Reidel Publishing, Dordrecht; SNTL-Publishers of Technical Literature, Praha (1982). (1982) Zbl0505.65029MR0689712
- Roskovec, F., Numerical solution of nonlinear convection-diffusion problems by adaptive methods, Master Thesis (2014), Czech. (2014)
- Toro, E. F., 10.1007/978-3-662-03915-1, (1999). (1999) Zbl0923.76004MR1717819DOI10.1007/978-3-662-03915-1
- Vlasák, M., Dolejší, V., Hájek, J., 10.1002/num.20591, Numer. Methods Partial Differ. Equations 27 (2011), 1456-1482. (2011) Zbl1237.65105MR2838303DOI10.1002/num.20591
- Vlasák, M., Vlasáková, Z., Derivation of BDF coefficients for equidistant time step, Programs and Algorithms of Numerical Mathematics 15 Proc. Seminar, Dolní Maxov, Academy of Sciences of the Czech Republic, Institute of Mathematics, Praha (2010), 221-226. (2010) Zbl1340.65137MR3203769
- Neumann, J. von, 10.1002/mana.3210040124, Math. Nachr. 4 (1951), 258-281. (1951) Zbl0042.12301MR0043386DOI10.1002/mana.3210040124
- Widlund, O. B., 10.1007/BF01934126, BIT, Nord. Tidskr. Inf.-behandl. 7 (1967), 65-70. (1967) Zbl0178.18502MR0215533DOI10.1007/BF01934126
- Wright, K., 10.1007/BF01936868, BIT, Nord. Tidskr. Inf.-behandl. 10 (1970), 217-227. (1970) Zbl0208.41602MR0266439DOI10.1007/BF01936868
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.