Time discretizations for evolution problems

Miloslav Vlasák

Applications of Mathematics (2017)

  • Volume: 62, Issue: 2, page 135-169
  • ISSN: 0862-7940

Abstract

top
The aim of this work is to give an introductory survey on time discretizations for liner parabolic problems. The theory of stability for stiff ordinary differential equations is explained on this problem and applied to Runge-Kutta and multi-step discretizations. Moreover, a natural connection between Galerkin time discretizations and Runge-Kutta methods together with order reduction phenomenon is discussed.

How to cite

top

Vlasák, Miloslav. "Time discretizations for evolution problems." Applications of Mathematics 62.2 (2017): 135-169. <http://eudml.org/doc/287958>.

@article{Vlasák2017,
abstract = {The aim of this work is to give an introductory survey on time discretizations for liner parabolic problems. The theory of stability for stiff ordinary differential equations is explained on this problem and applied to Runge-Kutta and multi-step discretizations. Moreover, a natural connection between Galerkin time discretizations and Runge-Kutta methods together with order reduction phenomenon is discussed.},
author = {Vlasák, Miloslav},
journal = {Applications of Mathematics},
keywords = {time discretizations; parabolic PDEs; stiff ODEs; Runge-Kutta methods; multi-step methods},
language = {eng},
number = {2},
pages = {135-169},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Time discretizations for evolution problems},
url = {http://eudml.org/doc/287958},
volume = {62},
year = {2017},
}

TY - JOUR
AU - Vlasák, Miloslav
TI - Time discretizations for evolution problems
JO - Applications of Mathematics
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 2
SP - 135
EP - 169
AB - The aim of this work is to give an introductory survey on time discretizations for liner parabolic problems. The theory of stability for stiff ordinary differential equations is explained on this problem and applied to Runge-Kutta and multi-step discretizations. Moreover, a natural connection between Galerkin time discretizations and Runge-Kutta methods together with order reduction phenomenon is discussed.
LA - eng
KW - time discretizations; parabolic PDEs; stiff ODEs; Runge-Kutta methods; multi-step methods
UR - http://eudml.org/doc/287958
ER -

References

top
  1. Akrivis, G., Makridakis, C., Nochetto, R. H., 10.1007/s00211-011-0363-6, Numer. Math. 118 (2011), 429-456. (2011) Zbl1228.65125MR2810802DOI10.1007/s00211-011-0363-6
  2. Alexander, R., 10.1137/0714068, SIAM J. Numer. Anal. 14 (1977), 1006-1021. (1977) Zbl0374.65038MR0458890DOI10.1137/0714068
  3. Boffi, D., 10.1017/S0962492910000012, Acta Numer. 19 (2010), 1-120. (2010) Zbl1242.65110MR2652780DOI10.1017/S0962492910000012
  4. Brenner, P., Crouzeix, M., Thomée, V., 10.1051/m2an/1982160100051, RAIRO, Anal. Numér. 16 (1982), 5-26. (1982) Zbl0477.65040MR0648742DOI10.1051/m2an/1982160100051
  5. Butcher, J. C., 10.2307/2003405, Math. Comput. 18 (1964), 50-64. (1964) Zbl0123.11701MR0159424DOI10.2307/2003405
  6. Coddington, E. A., Levinson, N., Theory of Ordinary Differential Equations, McGraw-Hill Book Company, New York (1955). (1955) Zbl0064.33002MR0069338
  7. Crouzeix, M., Hundsdorfer, W. H., Spijker, M. N., 10.1007/BF01937328, BIT 23 (1983), 84-91. (1983) Zbl0506.65030MR0689606DOI10.1007/BF01937328
  8. Crouzeix, M., Lisbona, F. J., 10.1137/0721037, SIAM J. Numer. Anal. 21 (1984), 512-534. (1984) Zbl0542.65038MR0744171DOI10.1137/0721037
  9. Crouzeix, M., Raviart, P.-A., Approximation des équations d'évolution linéaires par des méthodes à pas multiples, C. R. Acad. Sci., Paris, Sér. A 283 (1976), 367-370. (1976) Zbl0361.65064MR0426434
  10. Curtiss, C. F., Hirschfelder, J. O., 10.1073/pnas.38.3.235, Proc. Natl. Acad. Sci. USA 38 (1952), 235-243. (1952) Zbl0046.13602MR0047404DOI10.1073/pnas.38.3.235
  11. Dahlquist, G., 10.7146/math.scand.a-10454, Math. Scand. 4 (1956), 33-53. (1956) Zbl0071.11803MR0080998DOI10.7146/math.scand.a-10454
  12. Dekker, K., On the iteration error in algebraically stable Runge-Kutta methods, Report NW 138/82, Math. Centrum, Amsterdam (1982). (1982) 
  13. Dolejší, V., Feistauer, M., 10.1007/978-3-319-19267-3, Springer Series in Computational Mathematics 48, Springer, Cham (2015). (2015) Zbl06467550MR3363720DOI10.1007/978-3-319-19267-3
  14. Ehle, B. L., On Padé approximations to the exponential function and A-stable methods for the numerical solution of initial value problems, Thesis (Ph.D)-University of Waterloo, Ontario (1969). (1969) MR2716012
  15. Frank, R., Schneid, J., Ueberhuber, C. W., 10.1137/0722031, SIAM J. Numer. Anal. 22 (1985), 515-534. (1985) Zbl0577.65056MR0787574DOI10.1137/0722031
  16. Gear, C. W., Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs (1971). (1971) Zbl1145.65316MR0315898
  17. Gear, C. W., Tu, K. W., 10.1137/0711079, SIAM J. Numer. Anal. 11 (1974), 1025-1043. (1974) Zbl0292.65041MR0368436DOI10.1137/0711079
  18. Grigorieff, R. D., 10.1007/BF01389580, Numer. Math. 42 (1983), 359-377. (1983) Zbl0554.65051MR0723632DOI10.1007/BF01389580
  19. Grigorieff, R. D., Pfeiffer, H. J., 10.1007/978-3-322-91202-2, Teubner Studienbücher: Mathematik. B. G. Teubner, Stuttgart (1977). (1977) Zbl0372.65025MR0657222DOI10.1007/978-3-322-91202-2
  20. Guillou, A., Soulé, J. L., 10.1051/m2an/196903r300171, Rev. Franç. Inform. Rech. Opér. 3 (1969), 17-44. (1969) Zbl0214.15005MR0280008DOI10.1051/m2an/196903r300171
  21. Hairer, E., Nørsett, S. P., Wanner, G., 10.1007/978-3-540-78862-1, Springer Series in Computational Mathematics 8, Springer, Berlin (1993). (1993) Zbl0789.65048MR1227985DOI10.1007/978-3-540-78862-1
  22. Hairer, E., Wanner, G., 10.1007/978-3-642-05221-7, Springer Series in Computational Mathematics 14, Springer, Berlin (1996). (1996) Zbl0859.65067MR1439506DOI10.1007/978-3-642-05221-7
  23. Henrici, P., Discrete Variable Methods in Ordinary Differential Equations, John Wiley and Sons, New York (1962). (1962) Zbl0112.34901MR0135729
  24. Hochbruck, M., Ostermann, A., 10.1017/S0962492910000048, Acta Numerica 19 (2010), 209-286. (2010) Zbl1242.65109MR2652783DOI10.1017/S0962492910000048
  25. Hulme, B. L., 10.2307/2005168, Math. Comput. 26 (1972), 415-426. (1972) Zbl0265.65038MR0321301DOI10.2307/2005168
  26. Kuntzmann, J., 10.1002/zamm.19610411317, Z. Angew. Math. Mech. 41 (1961), T28--T31. (1961) Zbl0106.10403DOI10.1002/zamm.19610411317
  27. Lubich, C., 10.1007/BF01385657, Numer. Math. 58 (1991), 839-853. (1991) Zbl0729.65055MR1098868DOI10.1007/BF01385657
  28. Padé, H., 10.24033/asens.378, Ann. Sci. Éc. Norm. Supér. (3) 9 (1892), 3-93 9999JFM99999 24.0360.02. (1892) MR1508880DOI10.24033/asens.378
  29. Prothero, A., Robinson, A., 10.2307/2005822, Math. Comput. 28 (1974), 145-162. (1974) Zbl0309.65034MR0331793DOI10.2307/2005822
  30. Rektorys, K., The Method of Discretization in Time and Partial Differential Equations, Mathematics and Its Applications (East European Series) 4, D. Reidel Publishing, Dordrecht; SNTL-Publishers of Technical Literature, Praha (1982). (1982) Zbl0505.65029MR0689712
  31. Roskovec, F., Numerical solution of nonlinear convection-diffusion problems by adaptive methods, Master Thesis (2014), Czech. (2014) 
  32. Toro, E. F., 10.1007/978-3-662-03915-1, (1999). (1999) Zbl0923.76004MR1717819DOI10.1007/978-3-662-03915-1
  33. Vlasák, M., Dolejší, V., Hájek, J., 10.1002/num.20591, Numer. Methods Partial Differ. Equations 27 (2011), 1456-1482. (2011) Zbl1237.65105MR2838303DOI10.1002/num.20591
  34. Vlasák, M., Vlasáková, Z., Derivation of BDF coefficients for equidistant time step, Programs and Algorithms of Numerical Mathematics 15 Proc. Seminar, Dolní Maxov, Academy of Sciences of the Czech Republic, Institute of Mathematics, Praha (2010), 221-226. (2010) Zbl1340.65137MR3203769
  35. Neumann, J. von, 10.1002/mana.3210040124, Math. Nachr. 4 (1951), 258-281. (1951) Zbl0042.12301MR0043386DOI10.1002/mana.3210040124
  36. Widlund, O. B., 10.1007/BF01934126, BIT, Nord. Tidskr. Inf.-behandl. 7 (1967), 65-70. (1967) Zbl0178.18502MR0215533DOI10.1007/BF01934126
  37. Wright, K., 10.1007/BF01936868, BIT, Nord. Tidskr. Inf.-behandl. 10 (1970), 217-227. (1970) Zbl0208.41602MR0266439DOI10.1007/BF01936868

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.