Stability analysis of nonlinear time-delayed systems with application to biological models
H.a. Kruthika; Arun D. Mahindrakar; Ramkrishna Pasumarthy
International Journal of Applied Mathematics and Computer Science (2017)
- Volume: 27, Issue: 1, page 91-103
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topReferences
top- Aluru, S. (2005). Handbook of Computational Molecular Biology, CRC Press, Boca Raton, FL. Zbl1115.68387
- Andrew, S.M., Baker, C.T. and Bocharov, G.A. (2007). Rival approaches to mathematical modelling in immunology, Journal of Computational and Applied Mathematics 205(2): 669-686. Zbl1119.92037
- Babbs, C.F. (2011). Predicting success or failure of immunotherapy for cancer: Insights from a clinically applicable mathematical model, American Journal of Cancer Research 2(2): 204-213.
- Banerjee, S. (2008). Immunotherapy with interleukin-2: A study based on mathematical modeling, International Journal of Applied Mathematics and Computer Science 18(3): 389-398, DOI: 10.2478/v10006-008-0035-6. Zbl1176.93005
- Bell, G.I. (1973). Predator-prey equations simulating an immune response, Mathematical Biosciences 16(3): 291-314. Zbl0253.92003
- Bernot, G., Comet, J.-P., Richard, A., Chaves, M., Gouzé, J.-L. and Dayan, F. (2013). Modeling and analysis of gene regulatory networks, in F. Cazals and P. Kornprobst (Eds.), Modeling in Computational Biology and Biomedicine: A Multidisciplinary Endeavor, Springer, Berlin/Heidelberg, pp. 47-80.
- Bo, W., Yang, L. and Jianquan, L. (2012). New results on global exponential stability for impulsive cellular neural networks with any bounded time-varying delays, Mathematical and Computer Modelling 55(3): 837-843. Zbl1255.93103
- Bodnar, M. (2015). General model of a cascade of reactions with time delays: Global stability analysis, Journal of Differential Equations 259(2): 777-795. Zbl1330.34121
- Chen, L. and Aihara, K. (2002). Stability of genetic regulatory networks with time delay, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 49(5): 602-608.
- De Jong, H. (2002). Modeling and simulation of genetic regulatory systems: A literature review, Journal of Computational Biology 9(1): 67-103.
- d'Onofrio, A. (2005). A general framework for modeling tumor-immune-system competition and immunotherapy: Mathematical analysis and biomedical inferences, Physica D: Nonlinear Phenomena 208(3): 220-235. Zbl1087.34028
- d'Onofrio, A. (2008). Metamodeling tumor-immune-system interaction, tumor evasion and immunotherapy, Mathematical and Computer Modelling 47(5): 614-637. Zbl1148.92026
- d'Onofrio, A., Gatti, F., Cerrai, P. and Freschi, L. (2010). Delay-induced oscillatory dynamics of tumour-immune system interaction, Mathematical and Computer Modelling 51(5): 572-591. Zbl1190.34088
- Eduardo, L. and Ruiz-Herrera, A. (2013). Attractivity, multistability, and bifurcation in delayed Hopfield's model with non-monotonic feedback, Journal of Differential Equations 255(11): 4244-4266. Zbl1291.34121
- Goodwin, B.C. (1963). Temporal Organization in Cells: A Dynamic Theory of Cellular Control Processes, Academic Press, London/New York, NY.
- Gu, K., Chen, J. and Kharitonov, V.L. (2003). Stability of TimeDelay Systems, Springer, New York, NY.
- Kao, C.-Y. and Pasumarthy, R. (2012). Stability analysis of interconnected Hamiltonian systems under time delays, IET Control Theory and Applications 6(4): 570-577.
- Kao, C.-Y. and Rantzer, A. (2007). Stability analysis of systems with uncertain time-varying delays, Automatica 43(6): 959-970. Zbl1282.93203
- Kauffman, S.A. (1969). Metabolic stability and epigenesis in randomly constructed genetic nets, Journal of Theoretical Biology 22(3): 437-467.
- Kolmanovskii, V. and Myshkis, A. (1999). Introduction to the Theory and Applications of Functional Differential Equations, Springer, Dordrecht. Zbl0917.34001
- Liu, Y., Xu, P., Lu, J. and Liang, J. (2016a). Global stability of Clifford-valued recurrent neural networks with time delays, Nonlinear Dynamics 84(2): 767-777. Zbl1354.93132
- Liu, Y., Zhang, D., Lu, J. and Cao, J. (2016b). Global μ-stability criteria for quaternion-valued neural networks with unbounded time-varying delays, Information Sciences 360: 273-288.
- Loiseau, J.J., Michiels, W., Niculescu, S.-I. and Sipahi, R. (2009). Topics in Time Delay Systems: Analysis, Algorithms and Control, Springer, Berlin/Heidelberg.
- Mazenc, F. and Niculescu, S.-I. (2001). Lyapunov stability analysis for nonlinear delay systems, Systems & Control Letters 42(4): 245-251. Zbl0974.93059
- Melief, C.J. (2005). Cancer immunology: Cat and mouse games, Nature 437(7055): 41-42.
- Papachristodoulou, A. (2004). Analysis of nonlinear time-delay systems using the sum of squares decomposition, American Control Conference, Boston, MA, USA, pp. 4153-4158.
- Papachristodoulou, A. and Prajna, S. (2005). A tutorial on sum of squares techniques for systems analysis, American Control Conference, Portland, OR, USA, pp. 2686-2700. Zbl1138.93391
- Parrilo, P.A. (2000). Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization, PhD thesis, California Institute of Technology, Pasadena, CA.
- Pasumarthy, R. and Kao, C.-Y. (2009). On stability of time delay Hamiltonian systems, American Control Conference, St. Louis, MO, USA, pp. 4909-4914.
- Richard, J.-P. (2003). Time-delay systems: An overview of some recent advances and open problems, Automatica 39(10): 1667-1694. Zbl1145.93302
- Saleem, M. and Agrawal, T. (2012). Complex dynamics in a mathematical model of tumor growth with time delays in the cell proliferation, International Journal of Scientific and Research Publications 2(6): 1-7.
- Sharma, A., Kohar, V., Shrimali, M. and Sinha, S. (2014). Realizing logic gates with time-delayed synthetic genetic networks, Nonlinear Dynamics 76(1): 431-439. Zbl1319.92031
- She, Z. and Li, H. (2013). Dynamics of a density-dependent stage-structured predator-prey system with beddingtondeangelis functional response, Journal of Mathematical Analysis and Applications 406(1): 188-202. Zbl1306.92050
- Thomas, R. (1991). Regulatory networks seen as asynchronous automata: A logical description, Journal of Theoretical Biology 153(1): 1-23.
- Villasana, M. and Radunskaya, A. (2003). A delay differential equation model for tumor growth, Journal of Mathematical Biology 47(3): 270-294. Zbl1023.92014
- Wang, S., Wang, S. and Song, X. (2012). Hopf bifurcation analysis in a delayed oncolytic virus dynamics with continuous control, Nonlinear Dynamics 67(1): 629-640. Zbl1242.92036
- Yang, R., Wu, B. and Liu, Y. (2015). A Halanay-type inequality approach to the stability analysis of discrete-time neural networks with delays, Applied Mathematics and Computation 265: 696-707.
- Zhivkov, P. and Waniewski, J. (2003). Modelling tumour-immunity interactions with different stimulation functions, International Journal of Applied Mathematics and Computer Science 13(3): 307-315. Zbl1035.92024
- Zhong, J., Lu, J., Liu, Y. and Cao, J. (2014). Synchronization in an array of output-coupled Boolean networks with time delay, IEEE Transactions on Neural Networks and Learning Systems 25(12): 2288-2294.