Weighted Frobenius-Perron operators and their spectra

Mohammad Reza Jabbarzadeh; Rana Hajipouri

Mathematica Bohemica (2017)

  • Volume: 142, Issue: 2, page 113-124
  • ISSN: 0862-7959

Abstract

top
First, some classic properties of a weighted Frobenius-Perron operator 𝒫 ϕ u on L 1 ( Σ ) as a predual of weighted Koopman operator W = u U ϕ on L ( Σ ) will be investigated using the language of the conditional expectation operator. Also, we determine the spectrum of 𝒫 ϕ u under certain conditions.

How to cite

top

Jabbarzadeh, Mohammad Reza, and Hajipouri, Rana. "Weighted Frobenius-Perron operators and their spectra." Mathematica Bohemica 142.2 (2017): 113-124. <http://eudml.org/doc/288106>.

@article{Jabbarzadeh2017,
abstract = {First, some classic properties of a weighted Frobenius-Perron operator $\mathcal \{P\}_\varphi ^u$ on $L^1(\Sigma )$ as a predual of weighted Koopman operator $W=uU_\varphi $ on $L^\infty (\Sigma )$ will be investigated using the language of the conditional expectation operator. Also, we determine the spectrum of $\mathcal \{P\}_\varphi ^u$ under certain conditions.},
author = {Jabbarzadeh, Mohammad Reza, Hajipouri, Rana},
journal = {Mathematica Bohemica},
keywords = {Frobenius-Perron operator; Fredholm operator; spectrum},
language = {eng},
number = {2},
pages = {113-124},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weighted Frobenius-Perron operators and their spectra},
url = {http://eudml.org/doc/288106},
volume = {142},
year = {2017},
}

TY - JOUR
AU - Jabbarzadeh, Mohammad Reza
AU - Hajipouri, Rana
TI - Weighted Frobenius-Perron operators and their spectra
JO - Mathematica Bohemica
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 142
IS - 2
SP - 113
EP - 124
AB - First, some classic properties of a weighted Frobenius-Perron operator $\mathcal {P}_\varphi ^u$ on $L^1(\Sigma )$ as a predual of weighted Koopman operator $W=uU_\varphi $ on $L^\infty (\Sigma )$ will be investigated using the language of the conditional expectation operator. Also, we determine the spectrum of $\mathcal {P}_\varphi ^u$ under certain conditions.
LA - eng
KW - Frobenius-Perron operator; Fredholm operator; spectrum
UR - http://eudml.org/doc/288106
ER -

References

top
  1. Rao, K. P. S. Bhaskara, Rao, M. Bhaskara, Theory of Charges: A Study of Finitely Additive Measures, Pure and Applied Mathematics 109, Academic Press, London (1983). (1983) Zbl0516.28001MR0751777
  2. Campbell, J. T., Jamison, J. E., 10.1017/S0017089500009095, Glasg. Math. J. 32 (1990), 87-94 corrigendum on pages 261-263. (1990) Zbl0705.47027MR1045089DOI10.1017/S0017089500009095
  3. Ding, J., 10.1006/jmaa.1994.1191, J. Math. Anal. Appl. 184 (1994), 156-167. (1994) Zbl0804.47032MR1275951DOI10.1006/jmaa.1994.1191
  4. Ding, J., 10.1016/0893-9659(96)00033-X, Appl. Math. Lett. 9 (1996), 63-65. (1996) Zbl0857.47016MR1386001DOI10.1016/0893-9659(96)00033-X
  5. Ding, J., 10.1090/S0002-9939-98-04188-4, Proc. Am. Math. Soc. 126 (1998), 1355-1361. (1998) Zbl0892.47010MR1443148DOI10.1090/S0002-9939-98-04188-4
  6. Ding, J., Du, Q., Li, T. Y., 10.1006/jmaa.1994.1200, J. Math. Anal. Appl. 184 (1994), 285-301. (1994) Zbl0830.47022MR1278389DOI10.1006/jmaa.1994.1200
  7. Ding, J., Hornor, W. E., 10.1006/jmaa.1994.1405, J. Math. Anal. Appl. 187 (1994), 1047-1058. (1994) Zbl0819.47043MR1298836DOI10.1006/jmaa.1994.1405
  8. Ding, J., Zhou, A., 10.1006/jmaa.2000.7003, J. Math. Anal. Appl. 250 (2000), 610-620. (2000) Zbl0991.47014MR1786085DOI10.1006/jmaa.2000.7003
  9. Ding, J., Zhou, A., 10.1007/978-3-540-85367-1, Tsinghua University Texts. Springer, Berlin; Tsinghua University Press, Beijing (2009). (2009) Zbl1171.37001MR2518822DOI10.1007/978-3-540-85367-1
  10. Jabbarzadeh, M. R., Weighted Frobenius-Perron and Koopman operators, Bull. Iran. Math. Soc. 35 (2009), 85-96. (2009) Zbl1203.47018MR2642928
  11. Jabbarzadeh, M. R., 10.7153/oam-04-24, Oper. Matrices 4 (2010), 445-453. (2010) Zbl1217.47068MR2680958DOI10.7153/oam-04-24
  12. Jabbarzadeh, M. R., Emamalipour, H., Compact weighted Frobenius-Perron operators and their spectra, Bull. Iran. Math. Soc. 38 (2012), 817-826. (2012) Zbl06283466MR3028472
  13. Jabbarzadeh, M. R., Bakhshkandi, M. Jafari, Stability constants for weighted composition operators, To appear in Bull. Belg. Math. Soc.-Simon Stevin. 
  14. Rao, M. M., Conditional Measures and Applications, Pure and Applied Mathematics (Boca Raton) 271, Chapman & Hall/CRC, Boca Raton (2005). (2005) Zbl1079.60008MR2149673
  15. Yosida, K., 10.1007/978-3-642-61859-8, Classics in Mathematics. Vol. 123, Springer, Berlin (1995). (1995) Zbl0830.46001MR1336382DOI10.1007/978-3-642-61859-8
  16. Zaanen, A. C., Integration, North-Holland, Amsterdam (1967). (1967) Zbl0175.05002MR0222234

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.