A new weighted Gompertz distribution with applications to reliability data

Hassan S. Bakouch; Ahmed M. T. Abd El-Bar

Applications of Mathematics (2017)

  • Volume: 62, Issue: 3, page 269-296
  • ISSN: 0862-7940

Abstract

top
A new weighted version of the Gompertz distribution is introduced. It is noted that the model represents a mixture of classical Gompertz and second upper record value of Gompertz densities, and using a certain transformation it gives a new version of the two-parameter Lindley distribution. The model can be also regarded as a dual member of the log-Lindley- X family. Various properties of the model are obtained, including hazard rate function, moments, moment generating function, quantile function, skewness, kurtosis, conditional moments, mean deviations, some types of entropy, mean residual lifetime and stochastic orderings. Estimation of the model parameters is justified by the method of maximum likelihood. Two real data sets are used to assess the performance of the model among some classical and recent distributions based on some evaluation goodness-of-fit statistics. As a result, the variance-covariance matrix and the confidence interval of the parameters, and some theoretical measures have been calculated for such data for the proposed model with discussions.

How to cite

top

Bakouch, Hassan S., and Abd El-Bar, Ahmed M. T.. "A new weighted Gompertz distribution with applications to reliability data." Applications of Mathematics 62.3 (2017): 269-296. <http://eudml.org/doc/288176>.

@article{Bakouch2017,
abstract = {A new weighted version of the Gompertz distribution is introduced. It is noted that the model represents a mixture of classical Gompertz and second upper record value of Gompertz densities, and using a certain transformation it gives a new version of the two-parameter Lindley distribution. The model can be also regarded as a dual member of the log-Lindley-$X$ family. Various properties of the model are obtained, including hazard rate function, moments, moment generating function, quantile function, skewness, kurtosis, conditional moments, mean deviations, some types of entropy, mean residual lifetime and stochastic orderings. Estimation of the model parameters is justified by the method of maximum likelihood. Two real data sets are used to assess the performance of the model among some classical and recent distributions based on some evaluation goodness-of-fit statistics. As a result, the variance-covariance matrix and the confidence interval of the parameters, and some theoretical measures have been calculated for such data for the proposed model with discussions.},
author = {Bakouch, Hassan S., Abd El-Bar, Ahmed M. T.},
journal = {Applications of Mathematics},
keywords = {continuous distribution; distributional properties; weight function; estimation; estimated survival function},
language = {eng},
number = {3},
pages = {269-296},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A new weighted Gompertz distribution with applications to reliability data},
url = {http://eudml.org/doc/288176},
volume = {62},
year = {2017},
}

TY - JOUR
AU - Bakouch, Hassan S.
AU - Abd El-Bar, Ahmed M. T.
TI - A new weighted Gompertz distribution with applications to reliability data
JO - Applications of Mathematics
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 3
SP - 269
EP - 296
AB - A new weighted version of the Gompertz distribution is introduced. It is noted that the model represents a mixture of classical Gompertz and second upper record value of Gompertz densities, and using a certain transformation it gives a new version of the two-parameter Lindley distribution. The model can be also regarded as a dual member of the log-Lindley-$X$ family. Various properties of the model are obtained, including hazard rate function, moments, moment generating function, quantile function, skewness, kurtosis, conditional moments, mean deviations, some types of entropy, mean residual lifetime and stochastic orderings. Estimation of the model parameters is justified by the method of maximum likelihood. Two real data sets are used to assess the performance of the model among some classical and recent distributions based on some evaluation goodness-of-fit statistics. As a result, the variance-covariance matrix and the confidence interval of the parameters, and some theoretical measures have been calculated for such data for the proposed model with discussions.
LA - eng
KW - continuous distribution; distributional properties; weight function; estimation; estimated survival function
UR - http://eudml.org/doc/288176
ER -

References

top
  1. Al-Mutairi, D. K., Ghitany, M. E., Kundu, D., 10.1080/03610926.2011.563011, Commun. Stat., Theory Methods 42 (2013), 1443-1463. (2013) Zbl1294.62036MR3038588DOI10.1080/03610926.2011.563011
  2. Alzaghal, A., Famoye, F., Lee, C., 10.5539/ijsp.v2n3p31, Int. J. Stat. Probab. 2 (2013), 31-49. (2013) DOI10.5539/ijsp.v2n3p31
  3. Asgharzadeh, A., Bakouch, H. S., Nadarajah, S., Sharafi, F., 10.1214/14-BJPS253, Braz. J. Probab. Stat. 30 (2016), 1-27. (2016) Zbl06583974MR3453512DOI10.1214/14-BJPS253
  4. Bakouch, H. S., Jazi, M. A., Nadarajah, S., Dolati, A., Roozegar, R., 10.1016/j.apm.2014.04.028, Appl. Math. Model. 38 (2014), 5392-5406. (2014) MR3275147DOI10.1016/j.apm.2014.04.028
  5. Bemmaor, A. C., 10.1007/978-94-011-1402-8_6, Research Traditions in Marketing Int. Ser. in Quantitative Marketing 5, Kluwer, Boston G. Laurent, G. L. Lilien, B. Pras (1994), 201-223. (1994) DOI10.1007/978-94-011-1402-8_6
  6. El-Gohary, A., Alshamrani, A., Al-Otaibi, A. N., 10.1016/j.apm.2011.05.017, Appl. Math. Modelling 37 (2013), 13-24. (2013) Zbl1349.62035MR2994162DOI10.1016/j.apm.2011.05.017
  7. Galton, F., 10.1037/14178-000, MacMillan & Company, London (1883). (1883) DOI10.1037/14178-000
  8. Ghitany, M. E., Alqallaf, F., Al-Mutairi, D. K., Husain, H. A., 10.1016/j.matcom.2010.11.005, Math. Comput. Simul. 81 (2011), 1190-1201. (2011) Zbl1208.62021MR2769828DOI10.1016/j.matcom.2010.11.005
  9. Gómez-Déniz, E., Sordo, M. A., Calderín-Ojeda, E., 10.1016/j.insmatheco.2013.10.017, Insur. Math. Econ. 54 (2014), 49-57. (2014) Zbl1294.60016MR3145850DOI10.1016/j.insmatheco.2013.10.017
  10. Guisado, J. L., Jiménez-Morales, F., Guerra, J. M., 10.1016/j.mcm.2005.09.012, Math. Comput. Modelling 42 (2005), 847-854. (2005) Zbl1088.94518DOI10.1016/j.mcm.2005.09.012
  11. Gupta, R. C., Kirmani, S. N. U. A., 10.1016/S0378-3758(00)00134-8, J. Stat. Plann. Inference 91 (2000), 23-31. (2000) Zbl0958.62096MR1792361DOI10.1016/S0378-3758(00)00134-8
  12. Gupta, R. D., Kundu, D., 10.1080/02331880802605346, Statistics 43 (2009), 621-634. (2009) Zbl1291.60029MR2588273DOI10.1080/02331880802605346
  13. Jain, K., Singh, H., Bagai, I., 10.1080/03610928908830162, Commun. Stat., Theory Methods 18 (1989), 4393-4412. (1989) Zbl0707.62197MR1046715DOI10.1080/03610928908830162
  14. Jain, K., Singla, N., Gupta, R. D., 10.7151/dmps.1166, Discuss. Math., Probab. Stat. 34 (2014), 89-111. (2014) Zbl1326.60019MR3286175DOI10.7151/dmps.1166
  15. Jelinek, H. F., Tarvainen, M. P., Cornforth, D. J., Rényi entropy in identification of cardiac autonomic neuropathy in diabetes, Proceedings of the 39th Conference on Computing in Cardiology Institute of Electrical and Electronics Engineers (2012), 909-911. (2012) 
  16. Jiménez, F., 10.1016/j.cam.2013.07.004, J. Comput. Appl. Math. 255 (2014), 867-877. (2014) Zbl1291.62057MR3093467DOI10.1016/j.cam.2013.07.004
  17. Jiménez, F., Jodrá, P., 10.1080/03610920802155502, Commun. Stat., Theory Methods 38 (2009), 75-89. (2009) Zbl1292.60021MR2489673DOI10.1080/03610920802155502
  18. Jodrá, P., 10.1016/j.matcom.2010.09.006, Math. Comput. Simul. 81 (2010), 851-859. (2010) Zbl1207.65012MR2769536DOI10.1016/j.matcom.2010.09.006
  19. Lappi, J., Bailey, R. L., Estimation of the diameter increment function or other tree relations using angle-count samples, Forest Science 33 (1987), 725-739. (1987) 
  20. Magnussen, S., Eggermont, P., LaRiccia, V. N., Recovering tree heights from airborne laser scanner data, Forest Science 45 (1999), 407-422. (1999) 
  21. Makeham, W. M., 10.1017/s204616580000126x, J. Inst. Actuar. Assur. Mag. 8 (1860), 301-310. (1860) DOI10.1017/s204616580000126x
  22. Marshall, A., Olkin, I., 10.1007/978-0-387-68477-2, Springer Series in Statistics, Springer, New York (2007). (2007) Zbl1304.62019MR2344835DOI10.1007/978-0-387-68477-2
  23. Mathai, A. M., Haubold, H. J., 10.1016/j.physleta.2007.10.084, Phys. Lett., A 372 (2008), 2109-2133. (2008) Zbl1220.62167MR2295486DOI10.1016/j.physleta.2007.10.084
  24. Missov, T. I., Lenart, A., 10.4054/demres.2011.24.19, Demographic Research 24 (2011), 455-468. (2011) DOI10.4054/demres.2011.24.19
  25. Moors, J. J., 10.2307/2348376, J. R. Stat. Soc., Ser. D 37 (1988), 25-32. (1988) DOI10.2307/2348376
  26. Muth, J. E., Reliability models with positive memory derived from the mean residual life function, Theory and Applications of Reliability 2 (1977), 401-436. (1977) 
  27. Nadarajah, S., Bakouch, H. S., Tahmasbi, R., 10.1007/s13571-011-0025-9, Sankhyā, Ser. B. 73 (2011), 331-359. (2011) Zbl1268.62018MR2924199DOI10.1007/s13571-011-0025-9
  28. Nichols, M. D., Padgett, W. J., 10.1002/qre.691, Quality and Reliability Engineering International 22 (2006), 141-151. (2006) DOI10.1002/qre.691
  29. Patil, G. P., Rao, C. R., 10.2307/2530008, Biometrics 34 (1978), 179-189. (1978) Zbl0384.62014MR0507202DOI10.2307/2530008
  30. Pollard, J. H., Valkovics, E. J., The Gompertz distribution and its applications, Genus 48 (1992), 15-28. (1992) 
  31. Rényi, A., On measures of entropy and information, Proc. 4th Berkeley Symp. Math. Stat. Probab., Vol. I Univ. California Press, Berkeley (1961), 547-561. (1961) Zbl0106.33001MR0132570
  32. Shaked, M., Shanthikumar, J. G., Stochastic Orders and Their Applications, Probability and Mathematical Statistics, Academic Press, Boston (1994). (1994) Zbl0806.62009MR1278322
  33. Shanker, R., Sharma, S., Shanker, R., 10.4236/am.2013.42056, Applied Mathematics 4 (2013), 363-368. (2013) DOI10.4236/am.2013.42056
  34. Shannon, C. E., 10.1002/j.1538-7305.1948.tb01338.x, Bell. Syst. Tech. J. 27 (1948), 379-423, 623-656. (1948) Zbl1154.94303MR0026286DOI10.1002/j.1538-7305.1948.tb01338.x
  35. Singh, S. N., Tiwari, S. B., An application of generalized entropy in queueing theory, Journal of Applied Science and Engineering 16 (2013), 99-103. (2013) 
  36. Smith, R. L., Naylor, J. C., 10.2307/2347795, J. Roy. Statist. Soc. Ser. C 36 (1987), 358-369. (1987) MR0918854DOI10.2307/2347795
  37. Sucic, V., Saulig, N., Boashash, B., 10.1186/1687-6180-2011-125, EURASIP J. Adv. Signal Process. 125 (2011), 1-11. (2011) DOI10.1186/1687-6180-2011-125
  38. Warren, W. G., 10.1007/978-94-010-1845-6_27, Modern Course on Statistical Distributions in Scientific Work, Vol. 2 NATO Advanced Study Institutes Series, Vol. 17, D. Reidel Publishing Company, Dordrecht (1975), 369-384. (1975) DOI10.1007/978-94-010-1845-6_27
  39. Willekens, F., 10.1007/0-306-47562-6_5, Forecasting Mortality in Developed Countries: Insights from a Statistical, Demographic and Epidemiological Perspective European Studies of Population Vol. 9, Springer (2001), 105-126. (2001) DOI10.1007/0-306-47562-6_5

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.