Yetter-Drinfeld-Long bimodules are modules

Daowei Lu; Shuan Hong Wang

Czechoslovak Mathematical Journal (2017)

  • Volume: 67, Issue: 2, page 379-387
  • ISSN: 0011-4642

Abstract

top
Let H be a finite-dimensional bialgebra. In this paper, we prove that the category ℒℛ ( H ) of Yetter-Drinfeld-Long bimodules, introduced by F. Panaite, F. Van Oystaeyen (2008), is isomorphic to the Yetter-Drinfeld category H H * H H * 𝒴𝒟 over the tensor product bialgebra H H * as monoidal categories. Moreover if H is a finite-dimensional Hopf algebra with bijective antipode, the isomorphism is braided. Finally, as an application of this category isomorphism, we give two results.

How to cite

top

Lu, Daowei, and Wang, Shuan Hong. "Yetter-Drinfeld-Long bimodules are modules." Czechoslovak Mathematical Journal 67.2 (2017): 379-387. <http://eudml.org/doc/288181>.

@article{Lu2017,
abstract = {Let $H$ be a finite-dimensional bialgebra. In this paper, we prove that the category $\mathcal \{LR\}(H)$ of Yetter-Drinfeld-Long bimodules, introduced by F. Panaite, F. Van Oystaeyen (2008), is isomorphic to the Yetter-Drinfeld category $^\{H\otimes H^*\}_\{H\otimes H^*\}\mathcal \{YD\}$ over the tensor product bialgebra $H\otimes H^*$ as monoidal categories. Moreover if $H$ is a finite-dimensional Hopf algebra with bijective antipode, the isomorphism is braided. Finally, as an application of this category isomorphism, we give two results.},
author = {Lu, Daowei, Wang, Shuan Hong},
journal = {Czechoslovak Mathematical Journal},
keywords = {Hopf algebra; Yetter-Drinfeld-Long bimodule; braided monoidal category},
language = {eng},
number = {2},
pages = {379-387},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Yetter-Drinfeld-Long bimodules are modules},
url = {http://eudml.org/doc/288181},
volume = {67},
year = {2017},
}

TY - JOUR
AU - Lu, Daowei
AU - Wang, Shuan Hong
TI - Yetter-Drinfeld-Long bimodules are modules
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 2
SP - 379
EP - 387
AB - Let $H$ be a finite-dimensional bialgebra. In this paper, we prove that the category $\mathcal {LR}(H)$ of Yetter-Drinfeld-Long bimodules, introduced by F. Panaite, F. Van Oystaeyen (2008), is isomorphic to the Yetter-Drinfeld category $^{H\otimes H^*}_{H\otimes H^*}\mathcal {YD}$ over the tensor product bialgebra $H\otimes H^*$ as monoidal categories. Moreover if $H$ is a finite-dimensional Hopf algebra with bijective antipode, the isomorphism is braided. Finally, as an application of this category isomorphism, we give two results.
LA - eng
KW - Hopf algebra; Yetter-Drinfeld-Long bimodule; braided monoidal category
UR - http://eudml.org/doc/288181
ER -

References

top
  1. Kassel, C., 10.1007/978-1-4612-0783-2, Graduate Texts in Mathematics 155, Springer, New York (1995). (1995) Zbl0808.17003MR1321145DOI10.1007/978-1-4612-0783-2
  2. Panaite, F., Staic, M. D., 10.1142/S0219498812501861, J. Algebra Appl. 12 (2013), Paper No. 1250186, 21 pages. (2013) Zbl1275.18018MR3037261DOI10.1142/S0219498812501861
  3. Panaite, F., Staic, M. D., Oystaeyen, F. Van, 10.1016/j.jpaa.2009.08.008, J. Pure Appl. Algebra 214 (2010), 867-884. (2010) Zbl1207.16037MR2580665DOI10.1016/j.jpaa.2009.08.008
  4. Panaite, F., Oystaeyen, F. Van, 10.1016/j.jalgebra.2006.07.020, J. Algebra 309 (2007), 168-191. (2007) Zbl1126.16016MR2301236DOI10.1016/j.jalgebra.2006.07.020
  5. Panaite, F., Oystaeyen, F. Van, 10.1216/RMJ-2010-40-6-2013, Rocky Mt. J. Math. 40 (2010), 2013-2024. (2010) Zbl1206.16021MR2764235DOI10.1216/RMJ-2010-40-6-2013
  6. Radford, D. E., 10.1016/0021-8693(85)90124-3, J. Algebra 92 (1985), 322-347. (1985) Zbl0549.16003MR0778452DOI10.1016/0021-8693(85)90124-3
  7. Zhang, L., 10.1080/10020070612330038, Prog. Nat. Sci. 16 (2006), 580-587. (2006) Zbl1124.16036MR2247240DOI10.1080/10020070612330038

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.