Yetter-Drinfeld-Long bimodules are modules
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 2, page 379-387
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLu, Daowei, and Wang, Shuan Hong. "Yetter-Drinfeld-Long bimodules are modules." Czechoslovak Mathematical Journal 67.2 (2017): 379-387. <http://eudml.org/doc/288181>.
@article{Lu2017,
abstract = {Let $H$ be a finite-dimensional bialgebra. In this paper, we prove that the category $\mathcal \{LR\}(H)$ of Yetter-Drinfeld-Long bimodules, introduced by F. Panaite, F. Van Oystaeyen (2008), is isomorphic to the Yetter-Drinfeld category $^\{H\otimes H^*\}_\{H\otimes H^*\}\mathcal \{YD\}$ over the tensor product bialgebra $H\otimes H^*$ as monoidal categories. Moreover if $H$ is a finite-dimensional Hopf algebra with bijective antipode, the isomorphism is braided. Finally, as an application of this category isomorphism, we give two results.},
author = {Lu, Daowei, Wang, Shuan Hong},
journal = {Czechoslovak Mathematical Journal},
keywords = {Hopf algebra; Yetter-Drinfeld-Long bimodule; braided monoidal category},
language = {eng},
number = {2},
pages = {379-387},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Yetter-Drinfeld-Long bimodules are modules},
url = {http://eudml.org/doc/288181},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Lu, Daowei
AU - Wang, Shuan Hong
TI - Yetter-Drinfeld-Long bimodules are modules
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 2
SP - 379
EP - 387
AB - Let $H$ be a finite-dimensional bialgebra. In this paper, we prove that the category $\mathcal {LR}(H)$ of Yetter-Drinfeld-Long bimodules, introduced by F. Panaite, F. Van Oystaeyen (2008), is isomorphic to the Yetter-Drinfeld category $^{H\otimes H^*}_{H\otimes H^*}\mathcal {YD}$ over the tensor product bialgebra $H\otimes H^*$ as monoidal categories. Moreover if $H$ is a finite-dimensional Hopf algebra with bijective antipode, the isomorphism is braided. Finally, as an application of this category isomorphism, we give two results.
LA - eng
KW - Hopf algebra; Yetter-Drinfeld-Long bimodule; braided monoidal category
UR - http://eudml.org/doc/288181
ER -
References
top- Kassel, C., 10.1007/978-1-4612-0783-2, Graduate Texts in Mathematics 155, Springer, New York (1995). (1995) Zbl0808.17003MR1321145DOI10.1007/978-1-4612-0783-2
- Panaite, F., Staic, M. D., 10.1142/S0219498812501861, J. Algebra Appl. 12 (2013), Paper No. 1250186, 21 pages. (2013) Zbl1275.18018MR3037261DOI10.1142/S0219498812501861
- Panaite, F., Staic, M. D., Oystaeyen, F. Van, 10.1016/j.jpaa.2009.08.008, J. Pure Appl. Algebra 214 (2010), 867-884. (2010) Zbl1207.16037MR2580665DOI10.1016/j.jpaa.2009.08.008
- Panaite, F., Oystaeyen, F. Van, 10.1016/j.jalgebra.2006.07.020, J. Algebra 309 (2007), 168-191. (2007) Zbl1126.16016MR2301236DOI10.1016/j.jalgebra.2006.07.020
- Panaite, F., Oystaeyen, F. Van, 10.1216/RMJ-2010-40-6-2013, Rocky Mt. J. Math. 40 (2010), 2013-2024. (2010) Zbl1206.16021MR2764235DOI10.1216/RMJ-2010-40-6-2013
- Radford, D. E., 10.1016/0021-8693(85)90124-3, J. Algebra 92 (1985), 322-347. (1985) Zbl0549.16003MR0778452DOI10.1016/0021-8693(85)90124-3
- Zhang, L., 10.1080/10020070612330038, Prog. Nat. Sci. 16 (2006), 580-587. (2006) Zbl1124.16036MR2247240DOI10.1080/10020070612330038
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.