Skew inverse power series rings over a ring with projective socle
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 2, page 389-395
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topPaykan, Kamal. "Skew inverse power series rings over a ring with projective socle." Czechoslovak Mathematical Journal 67.2 (2017): 389-395. <http://eudml.org/doc/288183>.
@article{Paykan2017,
abstract = {A ring $R$ is called a right $\rm PS$-ring if its socle, $\{\rm Soc\}(R_\{R\} )$, is projective. Nicholson and Watters have shown that if $R$ is a right $\rm PS$-ring, then so are the polynomial ring $R[x]$ and power series ring $R[[x]]$. In this paper, it is proved that, under suitable conditions, if $R$ has a (flat) projective socle, then so does the skew inverse power series ring $R[[x^\{-1\};\alpha , \delta ]]$ and the skew polynomial ring $R[x;\alpha , \delta ]$, where $R$ is an associative ring equipped with an automorphism $\alpha $ and an $\alpha $-derivation $\delta $. Our results extend and unify many existing results. Examples to illustrate and delimit the theory are provided.},
author = {Paykan, Kamal},
journal = {Czechoslovak Mathematical Journal},
keywords = {skew inverse power series ring; skew polynomial ring; annihilator; projective socle ring; flat socle ring},
language = {eng},
number = {2},
pages = {389-395},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Skew inverse power series rings over a ring with projective socle},
url = {http://eudml.org/doc/288183},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Paykan, Kamal
TI - Skew inverse power series rings over a ring with projective socle
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 2
SP - 389
EP - 395
AB - A ring $R$ is called a right $\rm PS$-ring if its socle, ${\rm Soc}(R_{R} )$, is projective. Nicholson and Watters have shown that if $R$ is a right $\rm PS$-ring, then so are the polynomial ring $R[x]$ and power series ring $R[[x]]$. In this paper, it is proved that, under suitable conditions, if $R$ has a (flat) projective socle, then so does the skew inverse power series ring $R[[x^{-1};\alpha , \delta ]]$ and the skew polynomial ring $R[x;\alpha , \delta ]$, where $R$ is an associative ring equipped with an automorphism $\alpha $ and an $\alpha $-derivation $\delta $. Our results extend and unify many existing results. Examples to illustrate and delimit the theory are provided.
LA - eng
KW - skew inverse power series ring; skew polynomial ring; annihilator; projective socle ring; flat socle ring
UR - http://eudml.org/doc/288183
ER -
References
top- Armendariz, E. P., 10.1017/S1446788700029190, J. Aust. Math. Soc. 18 (1974), 470-473. (1974) Zbl0292.16009MR0366979DOI10.1017/S1446788700029190
- Goodearl, K. R., 10.1216/RMJ-1983-13-4-573, Rocky Mt. J. Math. 13 (1983), 573-618. (1983) Zbl0532.16002MR0724420DOI10.1216/RMJ-1983-13-4-573
- Gordon, R., 10.2140/pjm.1969.31.679, Pac. J. Math. 31 (1969), 679-692. (1969) Zbl0188.08402MR0265404DOI10.2140/pjm.1969.31.679
- Hashemi, E., Moussavi, A., 10.1007/s10474-005-0191-1, Acta Math. Hung. 107 (2005), 207-224. (2005) Zbl1081.16032MR2148584DOI10.1007/s10474-005-0191-1
- Kaplansky, I., Rings of Operators, Mathematics Lecture Note Series, W. A. Benjamin, New York (1968). (1968) Zbl0174.18503MR0244778
- Kim, C. O., Kim, H. K., Jang, S. H., A study on quasi-duo rings, Bull. Korean Math. Soc. 36 (1999), 579-588. (1999) Zbl0938.16002MR1722187
- Krempa, J., Some examples of reduced rings, Algebra Colloq. 3 (1996), 289-300. (1996) Zbl0859.16019MR1422968
- Lam, T. Y., Dugas, A. S., 10.1016/j.jpaa.2004.08.011, J. Pure Appl. Algebra 195 (2005), 243-259. (2005) Zbl1071.16003MR2114274DOI10.1016/j.jpaa.2004.08.011
- Leroy, A., Matczuk, J., Puczyłowski, E. R., 10.1016/j.jpaa.2008.01.002, J. Pure Appl. Algebra 212 (2008), 1951-1959. (2008) Zbl1143.16024MR2414695DOI10.1016/j.jpaa.2008.01.002
- Letzter, E. S., Wang, L., 10.1007/s10468-008-9123-4, Algebr. Represent. Theory 13 (2010), 303-314. (2010) Zbl1217.16038MR2630122DOI10.1007/s10468-008-9123-4
- Liu, Z. K., 10.1080/00927879508825301, Commun. Algebra 23 (1995), 1645-1656. (1995) Zbl0826.16002MR1323692DOI10.1080/00927879508825301
- Liu, Z., Li, F., 10.1080/00927879808826276, Commun. Algebra 26 (1998), 2283-2291. (1998) Zbl0905.16021MR1626626DOI10.1080/00927879808826276
- Nicholson, W. K., Watters, J. F., 10.2307/2047200, Proc. Am. Math. Soc. 102 (1988), 443-450. (1988) Zbl0657.16015MR0928957DOI10.2307/2047200
- Paykan, K., Moussavi, A., 10.1142/S0219498816501814, J. Algebra Appl. 15 (2016), Article ID 1650181, 23 pages. (2016) Zbl06667896MR3575971DOI10.1142/S0219498816501814
- Paykan, K., Moussavi, A., 10.1142/s0219498817502218, J. Algebra Appl. 16 (2017), Article ID 1750221, 33 pages. (2017) MR3725081DOI10.1142/s0219498817502218
- Salem, R. M., Farahat, M. A., Abd-Elmalk, H., 10.1155/2015/879129, Int. J. Math. Math. Sci. (2015), Article ID 879129, 6 pages. (2015) MR3332121DOI10.1155/2015/879129
- Tuganbaev, D. A., 10.1007/s10958-005-0244-6, J. Math. Sci., New York 128 (2005), 2843-2893. (2005) Zbl1122.16033MR2171557DOI10.1007/s10958-005-0244-6
- Xiao, Y., 10.2307/2161264, Proc. Am. Math. Soc. 123 (1995), 2391-2395. (1995) Zbl0835.16002MR1254860DOI10.2307/2161264
- Xue, W., Modules with projective socles, Riv. Mat. Univ. Parma, V. Ser. 1 (1992), 311-315. (1992) Zbl0806.16004MR1230620
- Yu, H.-P., 10.1017/S0017089500030342, Glasg. Math. J. 37 (1995), 21-31. (1995) Zbl0819.16001MR1316960DOI10.1017/S0017089500030342
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.