Skew inverse power series rings over a ring with projective socle

Kamal Paykan

Czechoslovak Mathematical Journal (2017)

  • Volume: 67, Issue: 2, page 389-395
  • ISSN: 0011-4642

Abstract

top
A ring R is called a right PS -ring if its socle, Soc ( R R ) , is projective. Nicholson and Watters have shown that if R is a right PS -ring, then so are the polynomial ring R [ x ] and power series ring R [ [ x ] ] . In this paper, it is proved that, under suitable conditions, if R has a (flat) projective socle, then so does the skew inverse power series ring R [ [ x - 1 ; α , δ ] ] and the skew polynomial ring R [ x ; α , δ ] , where R is an associative ring equipped with an automorphism α and an α -derivation δ . Our results extend and unify many existing results. Examples to illustrate and delimit the theory are provided.

How to cite

top

Paykan, Kamal. "Skew inverse power series rings over a ring with projective socle." Czechoslovak Mathematical Journal 67.2 (2017): 389-395. <http://eudml.org/doc/288183>.

@article{Paykan2017,
abstract = {A ring $R$ is called a right $\rm PS$-ring if its socle, $\{\rm Soc\}(R_\{R\} )$, is projective. Nicholson and Watters have shown that if $R$ is a right $\rm PS$-ring, then so are the polynomial ring $R[x]$ and power series ring $R[[x]]$. In this paper, it is proved that, under suitable conditions, if $R$ has a (flat) projective socle, then so does the skew inverse power series ring $R[[x^\{-1\};\alpha , \delta ]]$ and the skew polynomial ring $R[x;\alpha , \delta ]$, where $R$ is an associative ring equipped with an automorphism $\alpha $ and an $\alpha $-derivation $\delta $. Our results extend and unify many existing results. Examples to illustrate and delimit the theory are provided.},
author = {Paykan, Kamal},
journal = {Czechoslovak Mathematical Journal},
keywords = {skew inverse power series ring; skew polynomial ring; annihilator; projective socle ring; flat socle ring},
language = {eng},
number = {2},
pages = {389-395},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Skew inverse power series rings over a ring with projective socle},
url = {http://eudml.org/doc/288183},
volume = {67},
year = {2017},
}

TY - JOUR
AU - Paykan, Kamal
TI - Skew inverse power series rings over a ring with projective socle
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 2
SP - 389
EP - 395
AB - A ring $R$ is called a right $\rm PS$-ring if its socle, ${\rm Soc}(R_{R} )$, is projective. Nicholson and Watters have shown that if $R$ is a right $\rm PS$-ring, then so are the polynomial ring $R[x]$ and power series ring $R[[x]]$. In this paper, it is proved that, under suitable conditions, if $R$ has a (flat) projective socle, then so does the skew inverse power series ring $R[[x^{-1};\alpha , \delta ]]$ and the skew polynomial ring $R[x;\alpha , \delta ]$, where $R$ is an associative ring equipped with an automorphism $\alpha $ and an $\alpha $-derivation $\delta $. Our results extend and unify many existing results. Examples to illustrate and delimit the theory are provided.
LA - eng
KW - skew inverse power series ring; skew polynomial ring; annihilator; projective socle ring; flat socle ring
UR - http://eudml.org/doc/288183
ER -

References

top
  1. Armendariz, E. P., 10.1017/S1446788700029190, J. Aust. Math. Soc. 18 (1974), 470-473. (1974) Zbl0292.16009MR0366979DOI10.1017/S1446788700029190
  2. Goodearl, K. R., 10.1216/RMJ-1983-13-4-573, Rocky Mt. J. Math. 13 (1983), 573-618. (1983) Zbl0532.16002MR0724420DOI10.1216/RMJ-1983-13-4-573
  3. Gordon, R., 10.2140/pjm.1969.31.679, Pac. J. Math. 31 (1969), 679-692. (1969) Zbl0188.08402MR0265404DOI10.2140/pjm.1969.31.679
  4. Hashemi, E., Moussavi, A., 10.1007/s10474-005-0191-1, Acta Math. Hung. 107 (2005), 207-224. (2005) Zbl1081.16032MR2148584DOI10.1007/s10474-005-0191-1
  5. Kaplansky, I., Rings of Operators, Mathematics Lecture Note Series, W. A. Benjamin, New York (1968). (1968) Zbl0174.18503MR0244778
  6. Kim, C. O., Kim, H. K., Jang, S. H., A study on quasi-duo rings, Bull. Korean Math. Soc. 36 (1999), 579-588. (1999) Zbl0938.16002MR1722187
  7. Krempa, J., Some examples of reduced rings, Algebra Colloq. 3 (1996), 289-300. (1996) Zbl0859.16019MR1422968
  8. Lam, T. Y., Dugas, A. S., 10.1016/j.jpaa.2004.08.011, J. Pure Appl. Algebra 195 (2005), 243-259. (2005) Zbl1071.16003MR2114274DOI10.1016/j.jpaa.2004.08.011
  9. Leroy, A., Matczuk, J., Puczyłowski, E. R., 10.1016/j.jpaa.2008.01.002, J. Pure Appl. Algebra 212 (2008), 1951-1959. (2008) Zbl1143.16024MR2414695DOI10.1016/j.jpaa.2008.01.002
  10. Letzter, E. S., Wang, L., 10.1007/s10468-008-9123-4, Algebr. Represent. Theory 13 (2010), 303-314. (2010) Zbl1217.16038MR2630122DOI10.1007/s10468-008-9123-4
  11. Liu, Z. K., 10.1080/00927879508825301, Commun. Algebra 23 (1995), 1645-1656. (1995) Zbl0826.16002MR1323692DOI10.1080/00927879508825301
  12. Liu, Z., Li, F., 10.1080/00927879808826276, Commun. Algebra 26 (1998), 2283-2291. (1998) Zbl0905.16021MR1626626DOI10.1080/00927879808826276
  13. Nicholson, W. K., Watters, J. F., 10.2307/2047200, Proc. Am. Math. Soc. 102 (1988), 443-450. (1988) Zbl0657.16015MR0928957DOI10.2307/2047200
  14. Paykan, K., Moussavi, A., 10.1142/S0219498816501814, J. Algebra Appl. 15 (2016), Article ID 1650181, 23 pages. (2016) Zbl06667896MR3575971DOI10.1142/S0219498816501814
  15. Paykan, K., Moussavi, A., 10.1142/s0219498817502218, J. Algebra Appl. 16 (2017), Article ID 1750221, 33 pages. (2017) MR3725081DOI10.1142/s0219498817502218
  16. Salem, R. M., Farahat, M. A., Abd-Elmalk, H., 10.1155/2015/879129, Int. J. Math. Math. Sci. (2015), Article ID 879129, 6 pages. (2015) MR3332121DOI10.1155/2015/879129
  17. Tuganbaev, D. A., 10.1007/s10958-005-0244-6, J. Math. Sci., New York 128 (2005), 2843-2893. (2005) Zbl1122.16033MR2171557DOI10.1007/s10958-005-0244-6
  18. Xiao, Y., 10.2307/2161264, Proc. Am. Math. Soc. 123 (1995), 2391-2395. (1995) Zbl0835.16002MR1254860DOI10.2307/2161264
  19. Xue, W., Modules with projective socles, Riv. Mat. Univ. Parma, V. Ser. 1 (1992), 311-315. (1992) Zbl0806.16004MR1230620
  20. Yu, H.-P., 10.1017/S0017089500030342, Glasg. Math. J. 37 (1995), 21-31. (1995) Zbl0819.16001MR1316960DOI10.1017/S0017089500030342

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.