Certain decompositions of matrices over Abelian rings
Nahid Ashrafi; Marjan Sheibani; Huanyin Chen
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 2, page 417-425
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAshrafi, Nahid, Sheibani, Marjan, and Chen, Huanyin. "Certain decompositions of matrices over Abelian rings." Czechoslovak Mathematical Journal 67.2 (2017): 417-425. <http://eudml.org/doc/288185>.
@article{Ashrafi2017,
abstract = {A ring $R$ is (weakly) nil clean provided that every element in $R$ is the sum of a (weak) idempotent and a nilpotent. We characterize nil and weakly nil matrix rings over abelian rings. Let $R$ be abelian, and let $n\in \{\mathbb \{N\}\}$. We prove that $M_n(R)$ is nil clean if and only if $R/J(R)$ is Boolean and $M_n(J(R))$ is nil. Furthermore, we prove that $R$ is weakly nil clean if and only if $R$ is periodic; $R/J(R)$ is $\{\mathbb \{Z\}\}_3$, $B$ or $\{\mathbb \{Z\}\}_3\oplus B$ where $B$ is a Boolean ring, and that $M_n(R)$ is weakly nil clean if and only if $M_n(R)$ is nil clean for all $n\ge 2$.},
author = {Ashrafi, Nahid, Sheibani, Marjan, Chen, Huanyin},
journal = {Czechoslovak Mathematical Journal},
keywords = {idempotent element; nilpotent element; nil clean ring; weakly nil clean ring},
language = {eng},
number = {2},
pages = {417-425},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Certain decompositions of matrices over Abelian rings},
url = {http://eudml.org/doc/288185},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Ashrafi, Nahid
AU - Sheibani, Marjan
AU - Chen, Huanyin
TI - Certain decompositions of matrices over Abelian rings
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 2
SP - 417
EP - 425
AB - A ring $R$ is (weakly) nil clean provided that every element in $R$ is the sum of a (weak) idempotent and a nilpotent. We characterize nil and weakly nil matrix rings over abelian rings. Let $R$ be abelian, and let $n\in {\mathbb {N}}$. We prove that $M_n(R)$ is nil clean if and only if $R/J(R)$ is Boolean and $M_n(J(R))$ is nil. Furthermore, we prove that $R$ is weakly nil clean if and only if $R$ is periodic; $R/J(R)$ is ${\mathbb {Z}}_3$, $B$ or ${\mathbb {Z}}_3\oplus B$ where $B$ is a Boolean ring, and that $M_n(R)$ is weakly nil clean if and only if $M_n(R)$ is nil clean for all $n\ge 2$.
LA - eng
KW - idempotent element; nilpotent element; nil clean ring; weakly nil clean ring
UR - http://eudml.org/doc/288185
ER -
References
top- Ahn, M.-S., Anderson, D. D., 10.1216/rmjm/1181069429, Rocky Mt. J. Math. 36 (2006), 783-798. (2006) Zbl1131.13301MR2254362DOI10.1216/rmjm/1181069429
- Anderson, D. D., Camillo, V. P., 10.1081/AGB-120004490, Commun. Algebra 30 (2002), 3327-3336. (2002) Zbl1083.13501MR1914999DOI10.1081/AGB-120004490
- Andrica, D., Călugăreanu, G., 10.1142/S0219498814500091, J. Algebra Appl. 13 (2014), Article ID 1450009, 9 pages. (2014) Zbl1294.16019MR3195166DOI10.1142/S0219498814500091
- Breaz, S., Călugăreanu, G., Danchev, P., Micu, T., 10.1016/j.laa.2013.08.027, Linear Algebra Appl. 439 (2013), 3115-3119. (2013) Zbl06259710MR3116417DOI10.1016/j.laa.2013.08.027
- Breaz, S., Danchev, P., Zhou, Y., 10.1142/S0219498816501486, J. Algebra Appl. 15 (2016), Article ID 1650148, 11 pages. (2016) Zbl06619808MR3528770DOI10.1142/S0219498816501486
- Burgess, W. D., Stephenson, W., 10.4153/CMB-1979-022-8, Canad. Math. Bull. 22 (1979), 159-164. (1979) Zbl0411.16009MR0537296DOI10.4153/CMB-1979-022-8
- Chacron, M., 10.4153/CJM-1969-148-5, Can. J. Math. 21 (1969), 1348-1353. (1969) Zbl0213.04302MR0262295DOI10.4153/CJM-1969-148-5
- Chen, H., Rings Related to Stable Range Conditions, Series in Algebra 11, World Scientific, Hackensack (2011). (2011) Zbl1245.16002MR2752904
- Danchev, P. V., McGovern, W. W., 10.1016/j.jalgebra.2014.12.003, J. Algebra Appl. 425 (2015), 410-422. (2015) Zbl1316.16028MR3295991DOI10.1016/j.jalgebra.2014.12.003
- Diesl, A. J., 10.1016/j.jalgebra.2013.02.020, J. Algebra 383 (2013), 197-211. (2013) Zbl1296.16016MR3037975DOI10.1016/j.jalgebra.2013.02.020
- Koşan, M. T., Lee, T.-K., Zhou, Y., 10.1016/j.laa.2014.02.047, Linear Algebra Appl. 450 (2014), 7-12. (2014) Zbl1303.15016MR3192466DOI10.1016/j.laa.2014.02.047
- McGovern, W. W., Raja, S., Sharp, A., 10.1142/S0219498815500942, J. Algebra Appl. 14 (2015), Article ID 1550094, 5 pages. (2015) Zbl1325.16024MR3338090DOI10.1142/S0219498815500942
- Nicholson, W. K., 10.2307/1998510, Trans. Am. Math. Soc. 229 (1977), 269-278. (1977) Zbl0352.16006MR0439876DOI10.2307/1998510
- Yu, H.-P., 10.1017/S0017089500030342, Glasg. Math. J. 37 (1995), 21-31. (1995) Zbl0819.16001MR1316960DOI10.1017/S0017089500030342
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.