Certain decompositions of matrices over Abelian rings

Nahid Ashrafi; Marjan Sheibani; Huanyin Chen

Czechoslovak Mathematical Journal (2017)

  • Volume: 67, Issue: 2, page 417-425
  • ISSN: 0011-4642

Abstract

top
A ring R is (weakly) nil clean provided that every element in R is the sum of a (weak) idempotent and a nilpotent. We characterize nil and weakly nil matrix rings over abelian rings. Let R be abelian, and let n . We prove that M n ( R ) is nil clean if and only if R / J ( R ) is Boolean and M n ( J ( R ) ) is nil. Furthermore, we prove that R is weakly nil clean if and only if R is periodic; R / J ( R ) is 3 , B or 3 B where B is a Boolean ring, and that M n ( R ) is weakly nil clean if and only if M n ( R ) is nil clean for all n 2 .

How to cite

top

Ashrafi, Nahid, Sheibani, Marjan, and Chen, Huanyin. "Certain decompositions of matrices over Abelian rings." Czechoslovak Mathematical Journal 67.2 (2017): 417-425. <http://eudml.org/doc/288185>.

@article{Ashrafi2017,
abstract = {A ring $R$ is (weakly) nil clean provided that every element in $R$ is the sum of a (weak) idempotent and a nilpotent. We characterize nil and weakly nil matrix rings over abelian rings. Let $R$ be abelian, and let $n\in \{\mathbb \{N\}\}$. We prove that $M_n(R)$ is nil clean if and only if $R/J(R)$ is Boolean and $M_n(J(R))$ is nil. Furthermore, we prove that $R$ is weakly nil clean if and only if $R$ is periodic; $R/J(R)$ is $\{\mathbb \{Z\}\}_3$, $B$ or $\{\mathbb \{Z\}\}_3\oplus B$ where $B$ is a Boolean ring, and that $M_n(R)$ is weakly nil clean if and only if $M_n(R)$ is nil clean for all $n\ge 2$.},
author = {Ashrafi, Nahid, Sheibani, Marjan, Chen, Huanyin},
journal = {Czechoslovak Mathematical Journal},
keywords = {idempotent element; nilpotent element; nil clean ring; weakly nil clean ring},
language = {eng},
number = {2},
pages = {417-425},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Certain decompositions of matrices over Abelian rings},
url = {http://eudml.org/doc/288185},
volume = {67},
year = {2017},
}

TY - JOUR
AU - Ashrafi, Nahid
AU - Sheibani, Marjan
AU - Chen, Huanyin
TI - Certain decompositions of matrices over Abelian rings
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 2
SP - 417
EP - 425
AB - A ring $R$ is (weakly) nil clean provided that every element in $R$ is the sum of a (weak) idempotent and a nilpotent. We characterize nil and weakly nil matrix rings over abelian rings. Let $R$ be abelian, and let $n\in {\mathbb {N}}$. We prove that $M_n(R)$ is nil clean if and only if $R/J(R)$ is Boolean and $M_n(J(R))$ is nil. Furthermore, we prove that $R$ is weakly nil clean if and only if $R$ is periodic; $R/J(R)$ is ${\mathbb {Z}}_3$, $B$ or ${\mathbb {Z}}_3\oplus B$ where $B$ is a Boolean ring, and that $M_n(R)$ is weakly nil clean if and only if $M_n(R)$ is nil clean for all $n\ge 2$.
LA - eng
KW - idempotent element; nilpotent element; nil clean ring; weakly nil clean ring
UR - http://eudml.org/doc/288185
ER -

References

top
  1. Ahn, M.-S., Anderson, D. D., 10.1216/rmjm/1181069429, Rocky Mt. J. Math. 36 (2006), 783-798. (2006) Zbl1131.13301MR2254362DOI10.1216/rmjm/1181069429
  2. Anderson, D. D., Camillo, V. P., 10.1081/AGB-120004490, Commun. Algebra 30 (2002), 3327-3336. (2002) Zbl1083.13501MR1914999DOI10.1081/AGB-120004490
  3. Andrica, D., Călugăreanu, G., 10.1142/S0219498814500091, J. Algebra Appl. 13 (2014), Article ID 1450009, 9 pages. (2014) Zbl1294.16019MR3195166DOI10.1142/S0219498814500091
  4. Breaz, S., Călugăreanu, G., Danchev, P., Micu, T., 10.1016/j.laa.2013.08.027, Linear Algebra Appl. 439 (2013), 3115-3119. (2013) Zbl06259710MR3116417DOI10.1016/j.laa.2013.08.027
  5. Breaz, S., Danchev, P., Zhou, Y., 10.1142/S0219498816501486, J. Algebra Appl. 15 (2016), Article ID 1650148, 11 pages. (2016) Zbl06619808MR3528770DOI10.1142/S0219498816501486
  6. Burgess, W. D., Stephenson, W., 10.4153/CMB-1979-022-8, Canad. Math. Bull. 22 (1979), 159-164. (1979) Zbl0411.16009MR0537296DOI10.4153/CMB-1979-022-8
  7. Chacron, M., 10.4153/CJM-1969-148-5, Can. J. Math. 21 (1969), 1348-1353. (1969) Zbl0213.04302MR0262295DOI10.4153/CJM-1969-148-5
  8. Chen, H., Rings Related to Stable Range Conditions, Series in Algebra 11, World Scientific, Hackensack (2011). (2011) Zbl1245.16002MR2752904
  9. Danchev, P. V., McGovern, W. W., 10.1016/j.jalgebra.2014.12.003, J. Algebra Appl. 425 (2015), 410-422. (2015) Zbl1316.16028MR3295991DOI10.1016/j.jalgebra.2014.12.003
  10. Diesl, A. J., 10.1016/j.jalgebra.2013.02.020, J. Algebra 383 (2013), 197-211. (2013) Zbl1296.16016MR3037975DOI10.1016/j.jalgebra.2013.02.020
  11. Koşan, M. T., Lee, T.-K., Zhou, Y., 10.1016/j.laa.2014.02.047, Linear Algebra Appl. 450 (2014), 7-12. (2014) Zbl1303.15016MR3192466DOI10.1016/j.laa.2014.02.047
  12. McGovern, W. W., Raja, S., Sharp, A., 10.1142/S0219498815500942, J. Algebra Appl. 14 (2015), Article ID 1550094, 5 pages. (2015) Zbl1325.16024MR3338090DOI10.1142/S0219498815500942
  13. Nicholson, W. K., 10.2307/1998510, Trans. Am. Math. Soc. 229 (1977), 269-278. (1977) Zbl0352.16006MR0439876DOI10.2307/1998510
  14. Yu, H.-P., 10.1017/S0017089500030342, Glasg. Math. J. 37 (1995), 21-31. (1995) Zbl0819.16001MR1316960DOI10.1017/S0017089500030342

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.