-regularity for the -equation with a support condition
Shaban Khidr; Osama Abdelkader
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 2, page 515-523
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKhidr, Shaban, and Abdelkader, Osama. "$\mathcal {C}^k$-regularity for the $\bar{\partial }$-equation with a support condition." Czechoslovak Mathematical Journal 67.2 (2017): 515-523. <http://eudml.org/doc/288190>.
@article{Khidr2017,
abstract = {Let $D$ be a $\mathcal \{C\}^d$$q$-convex intersection, $d\ge 2$, $0\le q\le n-1$, in a complex manifold $X$ of complex dimension $n$, $n\ge 2$, and let $E$ be a holomorphic vector bundle of rank $N$ over $X$. In this paper, $\mathcal \{C\}^k$-estimates, $k=2, 3, \dots , \infty $, for solutions to the $\bar\{\partial \}$-equation with small loss of smoothness are obtained for $E$-valued $(0, s)$-forms on $D$ when $ n-q\le s\le n$. In addition, we solve the $\bar\{\partial \}$-equation with a support condition in $\mathcal \{C\}^k$-spaces. More precisely, we prove that for a $\bar\{\partial \}$-closed form $f$ in $\mathcal \{C\}_\{0,q\}^\{k\}(X\setminus D, E)$, $1\le q\le n-2$, $n\ge 3$, with compact support and for $\varepsilon $ with $0<\varepsilon <1$ there exists a form $u$ in $\mathcal \{C\}_\{0,q-1\}^\{k-\varepsilon \}(X\setminus D, E)$ with compact support such that $\bar\{\partial \}u=f$ in $X\setminus \overline\{D\}$. Applications are given for a separation theorem of Andreotti-Vesentini type in $\mathcal \{C\}^k$-setting and for the solvability of the $\bar\{\partial \}$-equation for currents.},
author = {Khidr, Shaban, Abdelkader, Osama},
journal = {Czechoslovak Mathematical Journal},
keywords = {$\bar\{\partial \}$-equation; $q$-convexity; $\mathcal \{C\}^k$-estimate},
language = {eng},
number = {2},
pages = {515-523},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$\mathcal \{C\}^k$-regularity for the $\bar\{\partial \}$-equation with a support condition},
url = {http://eudml.org/doc/288190},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Khidr, Shaban
AU - Abdelkader, Osama
TI - $\mathcal {C}^k$-regularity for the $\bar{\partial }$-equation with a support condition
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 2
SP - 515
EP - 523
AB - Let $D$ be a $\mathcal {C}^d$$q$-convex intersection, $d\ge 2$, $0\le q\le n-1$, in a complex manifold $X$ of complex dimension $n$, $n\ge 2$, and let $E$ be a holomorphic vector bundle of rank $N$ over $X$. In this paper, $\mathcal {C}^k$-estimates, $k=2, 3, \dots , \infty $, for solutions to the $\bar{\partial }$-equation with small loss of smoothness are obtained for $E$-valued $(0, s)$-forms on $D$ when $ n-q\le s\le n$. In addition, we solve the $\bar{\partial }$-equation with a support condition in $\mathcal {C}^k$-spaces. More precisely, we prove that for a $\bar{\partial }$-closed form $f$ in $\mathcal {C}_{0,q}^{k}(X\setminus D, E)$, $1\le q\le n-2$, $n\ge 3$, with compact support and for $\varepsilon $ with $0<\varepsilon <1$ there exists a form $u$ in $\mathcal {C}_{0,q-1}^{k-\varepsilon }(X\setminus D, E)$ with compact support such that $\bar{\partial }u=f$ in $X\setminus \overline{D}$. Applications are given for a separation theorem of Andreotti-Vesentini type in $\mathcal {C}^k$-setting and for the solvability of the $\bar{\partial }$-equation for currents.
LA - eng
KW - $\bar{\partial }$-equation; $q$-convexity; $\mathcal {C}^k$-estimate
UR - http://eudml.org/doc/288190
ER -
References
top- Andreotti, A., Hill, C. D., E. E. Levi convexity and the Hans Lewy problem I: Reduction to vanishing theorems, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 26 (1972), 325-363. (1972) Zbl0256.32007MR0460725
- Andreotti, A., Hill, C. D., E. E. Levi convexity and the Hans Lewy problem II: Vanishing theorems, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 26 (1972), 747-806. (1972) Zbl0283.32013MR0477150
- Barkatou, M.-Y., Khidr, S., 10.1002/mana.200910063, Math. Nachr. 284 (2011), 2024-2031. (2011) Zbl1227.32016MR2844676DOI10.1002/mana.200910063
- Brinkschulte, J., 10.1007/BF02385479, Ark. Mat. 42 (2004), 259-282. (2004) Zbl1078.32023MR2101387DOI10.1007/BF02385479
- Grauert, H., Kantenkohomologie, Compos. Math. 44 (1981), 79-101 German. (1981) Zbl0512.32011MR0662457
- Henkin, G. M., Leiterer, J., 10.1007/978-1-4899-6724-4, Progress in Mathematics 74, Birkhäuser, Boston (1988). (1988) Zbl0654.32002MR0986248DOI10.1007/978-1-4899-6724-4
- Khidr, S., Barkatou, M.-Y., Global solutions with -estimates for -equations on -concave intersections, Electron. J. Differ. Equ. 2013 (2013), Paper No. 62, 10 pages. (2013) Zbl1287.32002MR3040639
- Laurent-Thiébaut, C., Leiterer, J., The Andreotti-Vesentini separation theorem with estimates and extension of CR-forms, Several Complex Variables, Proc. Mittag-Leffler Inst., Stockholm, 1987/1988 Math. Notes 38, Princeton Univ. Press, Princeton (1993), 416-439. (1993) Zbl0776.32012MR1207871
- Lieb, I., Range, R. M., 10.1007/BF01578911, Math. Ann. 253 (1980), 145-164 German. (1980) Zbl0441.32007MR0597825DOI10.1007/BF01578911
- Michel, J., 10.1007/BF01474180, Math. Ann. 280 (1988), 45-68 German. (1988) Zbl0617.32032MR0928297DOI10.1007/BF01474180
- Michel, J., Perotti, A., 10.1007/BF02570747, Math. Z. 203 (1990), 415-427. (1990) Zbl0673.32019MR1038709DOI10.1007/BF02570747
- Ricard, H., 10.1007/s00209-003-0504-4, Math. Z. 244 (2003), 349-398 French. (2003) Zbl1036.32012MR1992543DOI10.1007/s00209-003-0504-4
- Sambou, S., 10.1002/1522-2616(200202)235:1<179::AID-MANA179>3.0.CO;2-8, Math. Nachr. 235 (2002), 179-190 French. (2002) Zbl1007.32012MR1889284DOI10.1002/1522-2616(200202)235:1<179::AID-MANA179>3.0.CO;2-8
- Sambou, S., 10.5802/afst.1020, Ann. Fac. Sci. Toulouse, VI. Sér., Math. 11 (2002), 105-129 French. (2002) Zbl1080.32502MR1986385DOI10.5802/afst.1020
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.