Existence results for a class of high order differential equation associated with integral boundary conditions at resonance

Le Cong Nhan; Do Huy Hoang; Le Xuan Truong

Archivum Mathematicum (2017)

  • Volume: 053, Issue: 2, page 111-130
  • ISSN: 0044-8753

Abstract

top
By using Mawhin’s continuation theorem, we provide some sufficient conditions for the existence of solution for a class of high order differential equations of the form x ( n ) = f ( t , x , x ' , , x ( n - 1 ) ) , t [ 0 , 1 ] , associated with the integral boundary conditions at resonance. The interesting point is that we shall deal with the case of nontrivial kernel of arbitrary dimension corresponding to high order differential operator which will cause some difficulties in constructing the generalized inverse operator.

How to cite

top

Nhan, Le Cong, Hoang, Do Huy, and Truong, Le Xuan. "Existence results for a class of high order differential equation associated with integral boundary conditions at resonance." Archivum Mathematicum 053.2 (2017): 111-130. <http://eudml.org/doc/288196>.

@article{Nhan2017,
abstract = {By using Mawhin’s continuation theorem, we provide some sufficient conditions for the existence of solution for a class of high order differential equations of the form \[x^\{(n)\} =f(t,x,x^\{\prime \},\dots ,x^\{(n-1)\})\,, \quad t \in [0, 1]\,,\] associated with the integral boundary conditions at resonance. The interesting point is that we shall deal with the case of nontrivial kernel of arbitrary dimension corresponding to high order differential operator which will cause some difficulties in constructing the generalized inverse operator.},
author = {Nhan, Le Cong, Hoang, Do Huy, Truong, Le Xuan},
journal = {Archivum Mathematicum},
keywords = {coincidence degree; high order differential equation; resonance},
language = {eng},
number = {2},
pages = {111-130},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Existence results for a class of high order differential equation associated with integral boundary conditions at resonance},
url = {http://eudml.org/doc/288196},
volume = {053},
year = {2017},
}

TY - JOUR
AU - Nhan, Le Cong
AU - Hoang, Do Huy
AU - Truong, Le Xuan
TI - Existence results for a class of high order differential equation associated with integral boundary conditions at resonance
JO - Archivum Mathematicum
PY - 2017
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 053
IS - 2
SP - 111
EP - 130
AB - By using Mawhin’s continuation theorem, we provide some sufficient conditions for the existence of solution for a class of high order differential equations of the form \[x^{(n)} =f(t,x,x^{\prime },\dots ,x^{(n-1)})\,, \quad t \in [0, 1]\,,\] associated with the integral boundary conditions at resonance. The interesting point is that we shall deal with the case of nontrivial kernel of arbitrary dimension corresponding to high order differential operator which will cause some difficulties in constructing the generalized inverse operator.
LA - eng
KW - coincidence degree; high order differential equation; resonance
UR - http://eudml.org/doc/288196
ER -

References

top
  1. Du, Z., Lin, X., Ge, W., 10.1016/j.cam.2004.08.003, J. Comput. Appl. Math. 177 (2005), 55–65. (2005) Zbl1059.34010MR2118659DOI10.1016/j.cam.2004.08.003
  2. Feng, W., Webb, J.R.L., 10.1006/jmaa.1997.5520, J. Math. Anal. Appl. 212 (1997), 467–480. (1997) Zbl0883.34020MR1464891DOI10.1006/jmaa.1997.5520
  3. Feng, W., Webb, J.R.L., 10.1016/S0362-546X(96)00118-6, Nonlinear Anal. 30 (6) (1997), 3227–3238. (1997) Zbl0891.34019MR1603039DOI10.1016/S0362-546X(96)00118-6
  4. Franco, D., Infante, G., Zima, M., 10.1002/mana.200810841, Math. Nachr. 284 (2011), 875–884. (2011) Zbl1273.34029MR2815958DOI10.1002/mana.200810841
  5. Gaines, R.E., Mawhin, J., 10.1007/BFb0089537, Lecture Notes in Math., vol. 568, Springer Verlag Berlin, 1977. (1977) Zbl0339.47031MR0637067DOI10.1007/BFb0089537
  6. Gao, Y., Pei, M., Solvability for two classes of higher-order multi-point boundary value problems at resonance, Boundary Value Problems (2008), Art. ID 723828, 14 pp. (2008) Zbl1149.34008MR2392915
  7. Gupta, C.P., 10.1155/S0161171295000901, Internat. J. Math. Math. Sci. 18 (4) (1995), 705–710. (1995) Zbl0839.34027MR1347059DOI10.1155/S0161171295000901
  8. Il’in, V.A., Moiseev, E.I., Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator, J. Differential Equations 23 (1987), 803–810. (1987) MR0903975
  9. Il’in, V.A., Moiseev, E.I., Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator, J. Differential Equations 23 (1987), 979–978. (1987) Zbl0668.34024MR0909590
  10. Infante, G., Zima, M., 10.1016/j.na.2007.08.024, Nonlinear Anal. 69 (2008), 622–633. (2008) Zbl1203.34041MR2446343DOI10.1016/j.na.2007.08.024
  11. Kosmatov, N., 10.1016/j.na.2005.09.042, Nonlinear Anal. 65 (2006), 622–633. (2006) Zbl1121.34023MR2231078DOI10.1016/j.na.2005.09.042
  12. Kosmatov, N., 10.1016/j.jmaa.2012.04.069, J. Math. Anal. Appl. 394 (2012), 425–431. (2012) Zbl1260.34037MR2926233DOI10.1016/j.jmaa.2012.04.069
  13. Lin, X., Du, Z., Ge, W., 10.1016/j.camwa.2005.01.001, Comput. Math. Appl. 49 (2005), 1–11. (2005) Zbl1081.34017MR2123180DOI10.1016/j.camwa.2005.01.001
  14. Lu, S., Ge, W., 10.1016/S0022-247X(03)00567-5, J. Math. Anal. Appl. 287 (2003), 522–539. (2003) Zbl1046.34029MR2024338DOI10.1016/S0022-247X(03)00567-5
  15. Ma, R., 10.1016/j.jmaa.2004.02.005, J. Math. Anal. Appl. 294 (2004), 147–157. (2004) Zbl1070.34028MR2059796DOI10.1016/j.jmaa.2004.02.005
  16. Mawhin, J., Topological degree methods in nonlinear boundary value problems, Expository lectures from the CBMS Regional Conference held at Harvey Mudd College, Claremont, Calif., June 9–15, 1977. CBMS Regional Conference Series in Mathematics, 40, American Mathematical Society, Providence, R.I., 1979. (1979) Zbl0414.34025MR0525202
  17. Mawhin, J., Functional analysis and nonlinear boundary value problems: the legacy of Andrzej Lasota, Ann. Math. Sil. 27 (2013), 7–38. (2013) Zbl1326.34013MR3157115
  18. O’Regan, D., 10.1090/S0002-9939-1991-1069295-2, Proc. Amer. Math. Soc. 113 (1991), 761–775. (1991) Zbl0742.34023MR1069295DOI10.1090/S0002-9939-1991-1069295-2
  19. Przeradzki, B., Three methods for the study of semilinear equations at resonance, Colloq. Math. (1993), 110–129. (1993) Zbl0828.47054MR1242650
  20. Wong, F.H., 10.1090/S0002-9939-98-04709-1, Proc. Amer. Math. Soc. 126 (1998), 2389–2397. (1998) MR1476399DOI10.1090/S0002-9939-98-04709-1
  21. Zhang, X., Feng, M., Ge, W., 10.1016/j.jmaa.2008.11.082, J. Math. Anal. Appl. 353 (2009), 311–319. (2009) Zbl1180.34016MR2508869DOI10.1016/j.jmaa.2008.11.082

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.