Existence results for a class of high order differential equation associated with integral boundary conditions at resonance
Le Cong Nhan; Do Huy Hoang; Le Xuan Truong
Archivum Mathematicum (2017)
- Volume: 053, Issue: 2, page 111-130
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topReferences
top- Du, Z., Lin, X., Ge, W., 10.1016/j.cam.2004.08.003, J. Comput. Appl. Math. 177 (2005), 55–65. (2005) Zbl1059.34010MR2118659DOI10.1016/j.cam.2004.08.003
- Feng, W., Webb, J.R.L., 10.1006/jmaa.1997.5520, J. Math. Anal. Appl. 212 (1997), 467–480. (1997) Zbl0883.34020MR1464891DOI10.1006/jmaa.1997.5520
- Feng, W., Webb, J.R.L., 10.1016/S0362-546X(96)00118-6, Nonlinear Anal. 30 (6) (1997), 3227–3238. (1997) Zbl0891.34019MR1603039DOI10.1016/S0362-546X(96)00118-6
- Franco, D., Infante, G., Zima, M., 10.1002/mana.200810841, Math. Nachr. 284 (2011), 875–884. (2011) Zbl1273.34029MR2815958DOI10.1002/mana.200810841
- Gaines, R.E., Mawhin, J., 10.1007/BFb0089537, Lecture Notes in Math., vol. 568, Springer Verlag Berlin, 1977. (1977) Zbl0339.47031MR0637067DOI10.1007/BFb0089537
- Gao, Y., Pei, M., Solvability for two classes of higher-order multi-point boundary value problems at resonance, Boundary Value Problems (2008), Art. ID 723828, 14 pp. (2008) Zbl1149.34008MR2392915
- Gupta, C.P., 10.1155/S0161171295000901, Internat. J. Math. Math. Sci. 18 (4) (1995), 705–710. (1995) Zbl0839.34027MR1347059DOI10.1155/S0161171295000901
- Il’in, V.A., Moiseev, E.I., Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator, J. Differential Equations 23 (1987), 803–810. (1987) MR0903975
- Il’in, V.A., Moiseev, E.I., Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator, J. Differential Equations 23 (1987), 979–978. (1987) Zbl0668.34024MR0909590
- Infante, G., Zima, M., 10.1016/j.na.2007.08.024, Nonlinear Anal. 69 (2008), 622–633. (2008) Zbl1203.34041MR2446343DOI10.1016/j.na.2007.08.024
- Kosmatov, N., 10.1016/j.na.2005.09.042, Nonlinear Anal. 65 (2006), 622–633. (2006) Zbl1121.34023MR2231078DOI10.1016/j.na.2005.09.042
- Kosmatov, N., 10.1016/j.jmaa.2012.04.069, J. Math. Anal. Appl. 394 (2012), 425–431. (2012) Zbl1260.34037MR2926233DOI10.1016/j.jmaa.2012.04.069
- Lin, X., Du, Z., Ge, W., 10.1016/j.camwa.2005.01.001, Comput. Math. Appl. 49 (2005), 1–11. (2005) Zbl1081.34017MR2123180DOI10.1016/j.camwa.2005.01.001
- Lu, S., Ge, W., 10.1016/S0022-247X(03)00567-5, J. Math. Anal. Appl. 287 (2003), 522–539. (2003) Zbl1046.34029MR2024338DOI10.1016/S0022-247X(03)00567-5
- Ma, R., 10.1016/j.jmaa.2004.02.005, J. Math. Anal. Appl. 294 (2004), 147–157. (2004) Zbl1070.34028MR2059796DOI10.1016/j.jmaa.2004.02.005
- Mawhin, J., Topological degree methods in nonlinear boundary value problems, Expository lectures from the CBMS Regional Conference held at Harvey Mudd College, Claremont, Calif., June 9–15, 1977. CBMS Regional Conference Series in Mathematics, 40, American Mathematical Society, Providence, R.I., 1979. (1979) Zbl0414.34025MR0525202
- Mawhin, J., Functional analysis and nonlinear boundary value problems: the legacy of Andrzej Lasota, Ann. Math. Sil. 27 (2013), 7–38. (2013) Zbl1326.34013MR3157115
- O’Regan, D., 10.1090/S0002-9939-1991-1069295-2, Proc. Amer. Math. Soc. 113 (1991), 761–775. (1991) Zbl0742.34023MR1069295DOI10.1090/S0002-9939-1991-1069295-2
- Przeradzki, B., Three methods for the study of semilinear equations at resonance, Colloq. Math. (1993), 110–129. (1993) Zbl0828.47054MR1242650
- Wong, F.H., 10.1090/S0002-9939-98-04709-1, Proc. Amer. Math. Soc. 126 (1998), 2389–2397. (1998) MR1476399DOI10.1090/S0002-9939-98-04709-1
- Zhang, X., Feng, M., Ge, W., 10.1016/j.jmaa.2008.11.082, J. Math. Anal. Appl. 353 (2009), 311–319. (2009) Zbl1180.34016MR2508869DOI10.1016/j.jmaa.2008.11.082